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As data grows complex, making sense of complex data for problem-solving by teams is 

becoming a challenge. Previous research suggests that challenging data problems can only be 

solved by leveraging human cognition, in combination with computational advances. However, 

this potential remains untapped, as collaborative sensemaking is fraught with significant multiple 

socio-cognitive challenges of information sharing and analysis. Lack of human centered design 

and evaluation approach to develop information sharing and problem-solving tools have resulted 

in little empirical knowledge about these challenges and potential design solutions to overcome 

these challenges. 

This dissertation offers a human centered design approach to iteratively design and 

evaluate collaborative sensemaking tools for a problem-solving task in the crime-solving 

domain. Crime-solving domain offers a life-critical germane ground to design for known human 

challenges that continue to recur. For every challenge, I designed and deployed a tool, and 

evaluated its effectiveness in a laboratory experiment where participants used my tools to solve a 

crime problem collaboratively and reported on task-performance and collaboration experience. 

Tools deployed in each iteration benefitted from the objective results, self-reported perception, 

user-log analysis, video-analysis, and qualitative feedback, from the previous iteration. 
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First, I designed SAVANT as a modular tool to highlight that data analytic tools perform 

better when customized for simplicity to enable different sensemaking tasks at hand, as opposed 

to offering all the complex features always. Next, SAVANT was modified based on lab-

experiment to solve the social challenge of inefficient explicit sharing of information among 

crime analysts. Collaborative version of SAVANT offers implicit sharing of notes and insights as 

an alternative between remotely collaborating data analysts. Finally, I invented Sensemaking 

Translucence, a design metaphor used to overcome the cognitive challenge of biased decision-

making through implicit visualization of decision-process artifacts, deployed in REFLECTIVA. 

By leveraging intermediate data analytic artifacts, including notes, insights, and communication, 

to drive visualizations in SAVANT and REFLECTIVA, my findings would benefit the design of 

web based data analytic tools. Future research directions and design implications deriving from 

these findings are also outlined at the end of this dissertation. 
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CHAPTER 1 

INTRODUCTION 

In April 2013, the annual Boston Marathon was rocked by two bomb blasts that killed 

three people and injuring several hundred of them (New York Times, 2013). As teams of police, 

government officials, federal agencies, and others worked to solve the crime, multiple challenges 

were discovered that have motivated this work. First, even though the prime suspects, two 

brothers, had already been on the terror suspect list for 18 months and U.S. intelligence analysts 

had noted their radicalization trips, these analysts failed to share the notes with their counterparts 

abroad, leading to a loss of important information. Second, redditors on the subforum Reddit 

Bureau of Investigation tried to solve the case by sifting through multiple official and unofficial 

streams of data. Once a redittor implicated someone, other redittors started looking for evidence 

to support the hypothesis and ignoring evidence that did not support it, a phenomenon known as 

confirmation bias. Redittors also publically implicated the wrong person, revealing that people, 

even large groups of people, cannot always perform a complex sensemaking task well. Finally, 

there was no joint information center to manage interrupting requests by 24/7 news cycle, and 

this led to confusion about what each agency was doing.  

The Boston Marathon bombing is only one of many examples that highlight the 

challenges people face when they collaborate to analyze and synthesize complex data to predict 

or solve crimes, an area I will call crime analysis in the remainder of this dissertation. Accounts 

by retired intelligence analysts (Heuer, 1999) and more examples presented across the chapters 

of this dissertation show that problems such as a lack of information sharing between agencies 

(e.g., Pickton Report, 2007; Egger, 2002; Mentis et al., 2009), cognitive biases that lead analysts 



 

 

 

2 

to focus on the wrong information (e.g.,  Police Chief Magazine, 2009;  Tversky & Kahneman, 

1973; Nickerson, 1998 ; Xu & Chen, 2005), an overload of information (e.g., Simon, 1957), 

interruptions (e.g., Czerwinski et al., 2000;  Latorella, 1998;  Speier et al., 1999), and insufficient 

workforce (e.g., New York Times, 2013) make solving crimes and crime analysis difficult.  

A number of computer-based tools have been developed to assist people with crime 

analysis (e.g., Gottlieb et al., 1994; Santos, 2016; Bier et al., 2010; Isenberg et al., 2012; Stasko 

et al., 2008; Kang et al., 2014; Convertino et al., 2009; Analyst’s Notebook/i2, 2011; 

CoMotion/General Dynamics, 2011; Palantir, 2011; Nobarany et al., 2012). These tools can help 

support analysis, for example by classifying relevant information into categories (Bier et al., 

2010; Gottlieb et al., 1994), tracking information flow (Analyst’s Notebook/i2, 2011), looking 

for red flags in large volumes of data (Palantir, 2011), supporting social information sharing 

(Nobarany et al., 2012; Kang et al., 2014; Convertino et al., 2009), and creating visualizations of 

the data (Stasko et al., 2008). 

Despite the promise of tools to support crime analysis, research is mixed as to their value.  

Laboratory studies have shown benefits to having these tools, for example sharing visualizations 

of analysis can improve the odds of solving a crime (e.g., Balakrishnan et al., 2008, 2010), and 

enabling discussion of information that disconfirms initial hypotheses can lead people to 

consider a wider pool of suspects (e.g., Convertino et al., 2008, 2011).  However, in real world 

settings analysts are reluctant to use analysis tools because they find them to be overly complex 

(Chin Jr., 2009; Heuer, 1999) or fail to integrate well with their personal analytical process 

(Egger, 2002). Instead, analysts rely on simple tools like Google search (Cowley et al., 2005), 
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post-it notes and spreadsheets, as they lay them out freely onto flat surfaces to manipulate and 

categorize them (Chin Jr., 2009; Heuer, 1999) 

The overall goal of this dissertation is to design and evaluate tools to support crime 

analysis that are both easy to use, such that analysts want to adopt them, and useful, in that they 

help overcome the cognitive and social biases that negatively impact analysis outcomes, as was 

the case in Boston Marathon Bombing.  I present three tool prototypes that I designed, developed 

and deployed to help improve collaborative sensemaking. 

 Specific Research Goals and Approach 

I take a human-centered design approach to the question of how best to support 

collaborative crime analysis.  My designs are informed by previous literature on sensemaking 

(e.g., Pirolli & Card, 1993; 1995; Russell et al., 1993; Waltz, 2003; Weick et al., 1993) and the 

analytic process (e.g., Chin et al., 2009; Convertino et al., Heuer, 1999; Johnston, 2005) as well 

as earlier designs for analysis tools (e.g., Analyst’s Notebook/i2, 2011; CoMotion/General 

Dynamics, 2011; Palantir, 2011, Stasko et al., 2008). I then try to tease out how different features 

of collaborative analysis tools could support sensemaking and information sharing while helping 

to reduce cognitive biases.  

Specifically, I address three sets of research questions: 

1. What are the benefits and costs of common features of analytic support tools (e.g., 

notepads, visualization tools, chat boxes, etc.)?  Is it possible to streamline the design 

of these systems by identifying the most important features? 

2. Can analytical tools improve information sharing across geographically distributed 

teams (e.g., notes, insights, hypothesis, evidence etc.)?  Would automatizing 
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information sharing, such that analysts don’t need to remember to explicitly do so, 

improve collaborative crime analysis? 

3. Could an analytical tool help analysts to be more self-reflective about their group-

level sensemaking processes (e.g., highlighting if we are attending to all potential 

solutions equally, etc.)?  Would this increased self-reflection benefit the analysis 

process or its outcomes? 

I use a mixed method approach to address these research questions. First, I iteratively 

design and evaluate a series of analytical tools, each of which incorporates features specifically 

designed to address particular problems analysts face such as information overload or cognitive 

tunneling. These tools incorporate a variety of design ideas, including modularity for 

customization, implicit information sharing, and sensemaking translucence. Second, I conduct a 

series of carefully controlled laboratory experiments to isolate the impact of each design decision 

on the sensemaking task performance and user experience.  I collect both qualitative and 

quantitative data to provide a deep understand how people use the tools, including task 

performance measures, subjective survey data, user log data, qualitative feedback and interviews. 

Research Contributions 

This dissertation contributes to the fields of human-computer interaction (HCI), design, 

and computer-supported cooperative work (CSCW) by developing and testing new strategies for 

supporting collaborative analysis, though modular design, including implicit sharing, and 

sensemaking translucence.  Specifically, this dissertation's contributions are: 

1. The creation of the SAVANT analysis platform, which allows investigators to 

selectively turn individual features such as notepads and visualization on and off, 
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thereby allowing for tests of how these individual features influence the sensemaking 

process. 

2. Evidence for the value of specific features of analysis tools, such as implicit 

information sharing and sense-making translucence, for successful collaborative 

problem solving. 

3. A set of design implications for future collaborative analysis tools, including 

suggested design of a series of prototype analysis tools, can benefit collaborative 

analysis. 

 Outline 

In the chapters that follow, I describe three laboratory studies that explore different 

challenges faced during collaborative sensemaking, and discuss my findings and their 

implications. In Chapter 2, I discuss related literature on sensemaking, collaborative 

sensemaking, design of tools for collaborative sensemaking, the associated challenges and 

solutions I pursued to overcome these challenges. Chapter 3 describes the design and laboratory 

evaluation of SAVANT – the prototypical tool I developed for solo sensemaking, to identify the 

value of customization and modularity of sensemaking features. Chapter 4 discusses how 

SAVANT was appropriated for collaborative sensemaking, and evaluated for implicit sharing of 

intermediate data analytic artifacts such as notes. Chapter 5 presents the design and evaluation of 

REFLECTIVA, a tool that leverages intermediate data analytic artifacts to make sensemaking 

more translucent. Finally, Chapter 6 summarizes my dissertation research, discusses limitations 

and provides implications for future work. 
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CHAPTER 2 

BACKGROUND 

This chapter describes previous work in areas that are pertinent to the design space of 

collaborative sensemaking. The chapter begins by discussing the general sensemaking process, 

the biases that can arise during sensemaking, and collaborative sensemaking. Then, I review the 

goals and features of existing sensemaking tools, with a focus on tools aimed to support 

collaborative analysis.  Finally, I describe the motivation behind my design strategy and the 

features that are incorporated in systems presented in later sections of this dissertation. 

The Sensemaking Process 

Sensemaking, as defined by Russell et al. (1993), is the process of searching for a 

representation and encoding data in that representation to answer task-specific questions. The 

process of sensemaking involves multiple stages, including: extracting data, creating categories, 

and iteratively categorizing and encoding data into the categories in order to generate 

representations that can best describe what is known.   

Pirolli and Card (19930; 1995) propose a model of sensemaking comprised of two loops: 

a foraging loop and a sensemaking. During the information foraging phase, analysts identify 

relevant documents and search these documents for clues and relationships. Interviews of 

professional analysts suggest that initial organization of documents and information is a major 

challenge yet essential for successful results (Johnston, 2005). In a crime scenario, a homicide 

detective must identify which documents are most relevant to solving the crime, pour through 

these to uncover key people, places, weapons, and motives, and uncover relationships among 

these entities. An important aspect of information foraging is that analysts will continue to 
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examine a source of information so long as it provides relevant information for their tasks; when 

that relevance declines, they will move on to the next information source.  

During the sensemaking phase, analysts construct mental models of their findings (Pirolli 

and Card, 2005), pulling their observations and the patterns they uncovered together into a 

coherent narrative, which then iteratively guides future information foraging. Analysts can 

consider multiple schemas simultaneously, as alternative explanations for observed facts and 

relationships. For example, they might simultaneously consider hypotheses in which one person 

committed the crime for financial gain, and another committed the crime because of jealousy. 

They then keep both hypotheses in mind as they return to information foraging. 

Finally, during the decision-making phase, analysts will typically choose one of their 

information schemas to act on. For example, homicide detectives might decide that the 

preponderance of evidence points to a single culprit with a single motive and an opportunity to 

commit the crime. They might then recommend that he be arrested and charged. However, such a 

process is fraught with multiple challenges for analysts and for designers alike. These challenges 

are further complicated by the patchwork of technologies that exist today and would exist in 

future, because we need to design for today with an eye towards the future. In the next sections, I 

will lay out the challenges in sensemaking, process of collaborative sensemaking, and how 

technological designs have impacted the collaborative sensemaking process. 

Errors and bias in sensemaking 

A key challenge for sensemaking in crime, intelligence, and many other domains is the 

vast amount of pertinent information. Information overload and a scarcity of time can make it 

difficult for analysts to thoroughly vet all the available information. Analysts often need to 



 

 

 

8 

satisfice (Simon, 1957), picking a good but not necessarily optimal path through the vast amount 

of available information. Although satisficing can improve efficiency, it can also lead to biases in 

the analysis. After noticing a few suspicious aspects of a suspect’s report of his whereabouts, for 

example, an analyst might focus on confirming that the suspect is guilty rather than thoroughly 

considering alternative suspects. Susceptibility to cognitive tunneling or confirmation bias 

(Nickerson, 19980; Xu & Chen, 2005) is common in human thought processes (Pirolli & Card, 

2005) and works against successful crime solving.  

Analysts’ sensemaking may also be biased by the availability of information schemas 

from their daily lives or previous analytic activities. This availability heuristic (Tversky & 

Kahneman, 1973) leads them to pursue certain paths through the data based on expectations that 

are not grounded in the data but in what they can easily recall from memory. For example, an 

analyst who has solved crimes in which a jealous partner or spouse was the culprit may decide to 

focus on a current victim’s partner or spouse regardless of whether or not the evidence points in 

that direction. To counteract these biases, analysts have proposed techniques to push analysts to 

consider all the data. For example, Heuer (1999) proposed that intelligence analysts can 

overcome bias by using what he calls the “analysis of competing hypotheses” (ACH) approach, 

in which they generate multiple competing hypotheses and search for evidence for and against 

each one. In an observational study of intelligence analysts, Chin, Kuchar, and Wolf (2009) 

found that many reported using a process that involved comparing hypotheses. Another 

promising direction is techniques that assist in working with large and complex datasets, for 

example, by visualizing the analytical reasoning process (Cook & Thomas, 2005). 
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Collaborative sensemaking 

Research in organization science by Weick et al. (1993) points out that sensemaking is 

not always a solo activity; instead, groups of people may socially co-construct views of the data. 

Furthermore, real world crimes, such as the Boston Marathon bombing or the 9/11 terrorist-

attacks (National Commission on Terrorist Attacks, 2004), are tacked by large teams of 

investigators who would ideally work productively together.  This collaboration can be 

asynchronous, such as when one agency passes documents along to another, or synchronous, 

such as when different agencies work together in real time to solve a case. Collaborating in the 

sensemaking processes can be advantageous since partners can leverage each other’s cognition 

and insights to solve hard problems (Goyal & Fussell, 2015; Hayne et al., 2011; Willett et al., 

2011). Multiple analysts may have different access to documents, and with more readers there is 

a greater ability to sift through large amounts of data and identify patterns.  

Like individual sensemaking, collaborative sensemaking requires information foraging, 

information schematization, decision-making, communication of insights and facts, and 

collaborating to identify a solution (Chin et al., 2009). But collaborative sensemaking can be 

especially challenging because analysts need to coordinate their tasks and workflows, share 

information with one other, and perform joint decision-making (Waltz, 2003). For example, 

analysts are often reluctant to exchange information and insights for fear they might be wrong 

(Heuer, 1999). In addition, the exchange of incorrect information can lead to poorer outcomes 

due to what Kang and Kiesler have termed teammate inaccuracy blindness (Kang et al., 2014).  

That is, analysts treat all information from a partner as valid and useful, regardless of its actual 
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quality.  As a result, if one member of a team of analysts prematurely focuses in on an incorrect 

suspect, the other is likely to follow. 

Even when collaborators do share information with one another, they may have difficulty 

establishing common ground or mutual knowledge of what that information means (Clark & 

Brennan, 1991), There are multiple reasons why analysts might not be able to reach common 

ground (Klein et. al., 2005; Laurence et. al, 2016), requiring continuous repair, and 

interpretation.   

Problems of information overload may be exacerbated when analysis is collaborative 

rather than solo, because new information from partners may come at unpredictable moments.  In 

general, prior work has shown that random interruptions can have significantly negative impact 

on task completion time (Czerwinski et al., 2000), task performance (Latorella, 1998), decision-

making (Speier et al., 1999), and affective state (Bailey et al., 2006; Bailey et al., 2006; Zijlstra 

et al., 1999).  

Sensemaking for crime analysis 

As discussed previously, the intelligence analysts iterate multiple times through foraging, 

sensemaking, and decision-making phases. However, this sensemaking process in crime analysis 

is a specific kind of sensemaking. The analysts must inductively parse documents to discover the 

breadth of potential suspect choices and then use the clues uncovered in the discovery process to 

deduce the right criminal of all the suspects. This combination of induction and deduction sets 

crime analysis as a special sensemaking task. Other sensemaking tasks, like medical 

sensemaking (Mentis et. al, 2009, Paul et. al, 2010), may focus on induction or deduction 

conversely. This careful iterative dance between induction and deduction makes collaborative 



 

 

 

11 

sensemaking even harder because, while one partner might be still be inductively pursuing 

suspect options, the other partner might have already deduced the criminal. How may then the 

two analysts collaborate and negotiate the correct criminal when one has not yet fully discovered 

the solution space? 

Summary 

As shown in the sections above, sensemaking is an iterative process in which individual 

analysts or teams of analysts iteratively sift through data and reason about that data.  It can be 

negatively impacted by cognitive biases that lead analysts to focus on some pieces of evidence 

and ignore others and by social processes that make analysts reluctant to share information that 

their teammates need. Further, it is evident that information and cognitive overload created due 

to paucity of time and resources present the challenge of solvability in crime analysis. This refers 

to how it remains challenging to solve crime cases due to In the next section, I discuss analysis 

tools that have been developed to address these problems 

Tools for Collaborative Sensemaking 

A wide variety of tools have been developed to support the sensemaking process and to 

try to reduce the negative effects of cognitive biases, information overload, and social dynamics, 

including both research prototypes (e.g., Chin Jr. et al., 2009; Convertino et al., 2008; 

Shrinivasan et al., 2008; Stasko et al., 2008) and commercial analysis products (e.g., Analyst’s 

Notebook/i2, 2011; CoMotion/General Dynamics, 2011; Palantir, 2011).  For example, tools can 

help analysts visualize and manipulate data at different levels of granularity to detect links 

between objects in large datasets and construct alternative hypotheses (Chin Jr. et al., 2009; 

Convertino et al., 2008; Shrinivasan et al., 2008; Stasko et al., 2008), as well as collect and 
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arrange data and notes for later reference (Andrews et al., 2010; Pioch et al., 2006; Wright et al., 

2006).  

Many existing analysis tools have taken the approach of incorporating features to address 

a broad array of analyst needs. For example, Bier et al.’s (2010) Entity Workspace system 

provides a reading area, search tools, collection overviews, and an evidence notebook to support 

the analysis of large document collections. More sophisticated features within the evidence 

notebook allow analysts to organize entities, create information structures that can be collapsed 

and expanded, visualize evidence that emphasizes events and documents. There is also a 

notification system that finds and displays entities of mutual interest to multiple analysts. 

In the remainder of this section, I review some of the common features found in analysis 

tools. 

Visualizing data and relationships among entities  

Tools for visualizing and detecting links between objects in large datasets have been 

specifically suggested to assist and improve analysts’ work. Such visualizations can help users 

aggregate and abstract activities (Heer and Agrawala, 2008), provide a view into the dataset 

using a shared network diagram (Balakrishnan et al., 2008), show a timeline (Ganoe et al., 2003), 

or present a user activities list (Heer et al., 2009).  

Stasko et al.’s (2008) Jigsaw tool, for example, is designed to help the sensemaking 

process through flexible visualization and manipulation of the data. A special “shoebox” area can 

be used to collect pertinent data for later reference. Shrinivasan et al’s (2008) Aruvi integrates a 

suite of visualization tools with access to the data at different levels of granularity. CrimeNet 

Explorer (Xu et al., 2005) creates and visualizes concept maps based on word co-occurrence 
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between crime report documents, with the goal of helping crime analysts detect members of 

criminal networks such as gangs. CACHE (Convertino et. al., 2008, 2011) explicitly incorporates 

Heuer’s Analysis of Competing Hypotheses (ACH) technique (Billman et al., 2005; Heer et al., 

2008), allowing analysts to build and evaluate matrices linking evidence to alternative 

hypotheses.  

Other visualization tools aim to help collaborators achieve common ground using 

collaborative visualizations (Chung et al, 2010; Heer and Agrawala, 2008; Isenberg et al., 2012; 

Janssen et al., 2007; Stasko et al., 2008; Tversky et al., 1975). Chuah and Roth (2003)’s 

Command Post of the Future, for example, tries to establish common ground between analysts 

through a combination of explicitly shared objects and events, representations of level of 

attention directed to objects, depiction of goals for analyzing objects and events, representation 

of interpretations and thoughts through annotations and sketches, and representation of object 

history. 

Structuring and manipulating information  

Many of these tools also help analysts structure and manipulate information as well as 

prepare reports on their findings. Sandbox (Wright et al., 2006) allows analysts to flexibly 

arrange notes and other information as they form information schemas. POLESTAR (Pioch & 

Everett, 2006) allows analysts to preserve snippets of textual data in a central archive, use them 

to construct arguments, and link to them in final analysis reports. 

Several tools allow analysts to structure the data collaboratively.  For instance, Bier et al. 

(2010) and Hayne et al. (2011) employ shared workspaces where analysts may classify 

and categorize existing information for future use into distinct categories. Co-located tools for 
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analysis have also been developed to help users identify pertinent information by 

searching, sorting, filtering and creating schemas (Isenberg et al., 2012); or find relevant pieces 

of information to generate story lines in location aware cross-device manipulation setups 

(Wozniak & Goyal et. al, 2016).  

Communication tools  

Leveraging partners’ insights requires sharing of insights and subsequent awareness of 

these insights. Prior research in sensemaking tools has shown that explicit communication 

through chats or comment threads (Heer et al., 2009) or annotations (Kang et al., 2012) helped 

analysts build a shared mental model during collaborative analysis.  

Other tools, meant for more general tasks like group brainstorming can also be helpful for 

collaborative analysis.  For example, GroupMind (Shih et al., 2009) balances between formal 

and informal models of the data through a process of incremental formalization; Livenotes (Kam 

et al., 2005) suggests collaborative note-taking for improved understanding, and TEAM STORM 

(Hailpern et al., 2007) allows analysts to work on multiple ideas in parallel to facilitate re-

interpretation and reflection on the action. 

Shared workspaces 

Shared workspaces have been shown to improve shared understanding and awareness in a 

wide variety of domains (Gergle et al., 2004; Gutwin & Greenberg, 1998) by promoting 

exchange of information and data with others (Hayne et al., 2011), improving common ground 

(Willett et al., 2011) and increasing awareness of the status of the analysis task and others’ 

activities in the task (Convertino et al., 2009; Pioch & Everett, 2006). Shared workspaces have 

primarily been researched from an explicit sharing perspective where analysts consciously 
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choose to share their insights at the appropriate point in the collaborative sensemaking cycle 

(Chuah & Roth, 2003; Convertino et al., 2008; Nobarany et al., 2012), although as noted earlier, 

analysts may be reluctant to share their ideas and information before until they are confident in 

their insights.  

Other tools have been incorporated into shared workspaces for synchronous collaborative 

sensemaking space. For example Andrews et al. (2010) and Vogt et al. (2011) examined the 

effects of large displays on the sensemaking process. Wong et al’s IN-SPIRE and HI-Space 

(2006) use a collaborative mobile, tabletop and wall display tool for dynamic analysis in group 

environments using visual analytics for collecting evidence and considering parallel competing 

hypotheses. Hayne et al. (2011) uses Design Cards across shared whiteboards for cognitive 

alignment between team members 

Notifications, reminders and recommendations  

Supporting collaborative analysis could include reminding analysts to view their partners’ 

analysis, as in AnalyticStream (Nobarany et al., 2012) or recommending relevant pieces of 

information from their partner (Bier et al., 2010). However, biases owing to personal beliefs may 

inhibit taking advantage of such features (e.g., Constant et al., 1994; Jarvenpaa et al., 2000; Lee 

et al., 2007) or lead to groupthink and/or cognitive tunneling (Willett et al., 2011).  

The tools designed to enable real-time notification vary from notification of each activity 

by the partner (Brush et al., 2002) to shared workspaces (Gergle et al., 2004; Gutwin & 

Greenberg, 1998) where others’ activities in the task are listed out (Convertino et al., 2009; Pioch 

et al., 2006). Instead of explicitly notifying activities, tools may also remind analysts to learn 

about their partners’ analysis (Nobarany et al., 2012). 
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Minimizing the impact of interruptions  

As noted earlier, random interruptions can have significantly negative impact on task 

completion time (Czerwinski et al., 2000), task performance (Latorella, 1998), decision-making 

(Speier et al., 1999), and affective state (Bailey et al., 2006; Bailey et al., 2006; Zijlstra et al., 

1999). Consequently, researchers have pursued multiple ways to overcome these negative 

impacts. One strategy is to schedule interruptions at breakpoints between tasks (Bailey et al., 

2006; Bailey et al., 2008), which are identified by modeling the tasks. Alternatively, one may 

create statistical models that detect such breakpoints based on user activity (Bailey et al., 2008; 

Fogarty et al., 2005; Horvitz et al., 1999). Finally, researchers have also attempted to identify the 

scheduling using correlation between interruptible moments and physiological data, such as 

pupil-dilation (Bailey et al., 2008), or studying how multiple sensor inputs can be used together 

to interrupt non-relevant distractions in a software engineering tasks (Züger et al., 2015). 

Perhaps one of the more recent tools aimed at interruption scheduling is OASIS, a system 

that defers notifications until breakpoints are reached to reduce interruption costs (Bailey et al., 

2008). The tool identifies the level of breakpoint needed for a notification, and then accordingly 

interrupts when a notification arrives. While this tool has been shown to work with six users on 

non-sensemaking tasks, it requires continual user-activity monitoring, via software installation at 

workplace, which has privacy implications. Further, the tool also required extensive training 

thought automated and manual coding. 

Summary 

In summary, a variety of analysis tools have been designed to date. But while the 

inventors of the tools report that they are beneficial for analysis, the majority of them have been 
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evaluated only informally, with a handful of users (e.g., Bier et al., 2010).  Further, many tool 

evaluations were conducted with all features available simultaneously. For example, Kang et al. 

(2011) conducted a controlled study with their Jigsaw tool to understand the influence of its 

components on the analytical process. Design implications derived from their study include 

facilitating clue-finding, supporting evidence marshalling, and allowing flexible note taking.  

While such studies are valuable, they do not shed light on the unique benefit or cost of 

any one single design feature to the analytical process, nor do they in most cases provide 

sufficient data for statistical testing of the effects of a given feature. Furthermore, analysts often 

fail to adopt these tools.  Cowley et al.’s (2005) study of intelligence analysts’ tool use showed 

that they spent the preponderance of their time either using a web browser to search for 

information or a word processing program to compile the results. They seem to have done most 

of their hypothesis generation and analysis in their heads, leaving no documentation trail. 

Similarly, Chin et al. (2009) found that analysts preferred either paper graphs and diagrams or 

PowerPoint and Excel for their analyses over specialized analysis support tools.  

This Dissertation: Designing Technology for Sensemaking in Crime-Solving 

In the first two sections of this chapter, I showed that analysis is a complicated 

sensemaking process that is made even more complicated when analysts collaborate, and that a 

wide variety of tools have been created to help address these sensemaking challenges, often by 

including large sets of features.  At the same time, analysts still prefer simple tools like web 

search and Excel documents. In this section, I briefly describe my overall design goals and the 

specific strategies I used in the research prototypes presented in later chapters of this dissertation. 
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My work takes a human-in-the loop approach to designing tools to improve collaborative 

sense-making. In other words, my tools aim to improve how well analysts can perform 

sensemaking and how well they collaborate with one another, rather than, say, replacing human 

efforts with deep learning or other computational approaches. In particular, I focus on iteratively 

designing tools to address three specific challenges: 

C1. Design a sensemaking tool that allows researchers to evaluate the benefits and costs 

of specific features in addition to its usefulness as a whole. 

C2. Design a sensemaking tool that facilitates information sharing by helping analysts 

overcome social barriers to sharing  

C3. Design a sensemaking tool that enables the analysts to be more reflective and aware 

about their sensemaking process and avoid cognitive fixation. 

I briefly discuss each of these challenges and my approach to addressing them below. 

Evaluating features of sensemaking tools  

As noted earlier, many analysts are reluctant to use current analysis tools because they 

find them overly complex (e.g., Cowley et al., 2005; Chin et al., 2009).  However, it is difficult 

to understand how to simplify these tools because most have been designed to have many 

features and tested with small number of users employing all the features of the system 

simultaneously (e.g., Bier et al., 2010; Kang et al., 2011). My first goal was thus to create a 

modular platform that enabled testing and evaluating specific features individually. My system 

SAVANT, presented in Chapter 3, combines concepts from previous visualization tools (e.g., 

Billman et al., 2005; Heer et al., 2008), enabling the organization and visualization of data at 

different levels, and visualizing links between objects that otherwise couldn’t be detected.  I 
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show how this platform can be used to compare the value of two different sensemaking features, 

a shared note space and a visualization tool 

Designing to facilitate information sharing 

As noted earlier, analysts can be reluctant to share intermediate products of their analysis 

due to concerns about being correct, but partners may benefit from receiving this information 

earlier in the sensemaking cycle (Egger, 2002 ; National Commission on Terrorist Attacks, 2004; 

Cabrera, 2002).  In addition, the need to decide when and to whom information should be shared 

can create additional cognitive load on analysts. To respond to this challenge, I explored whether 

implicit sharing, in which the system automatically shares insights between analysts, can better 

support collaborative analysis. In Chapter 4, I will discuss a collaborative version of SAVANT 

that was designed for evaluating the value of implicit sharing in addition to explicit sharing. I 

found that both explicit and implicit sharing are complimentary channels that benefit from each 

other’s presence but either one is not sufficient towards identifying the hidden pattern. 

Designing for sensemaking translucence 

Prior work shows that even when analysts freely exchange their ideas, biases such as 

cognitive tunneling can lead to poor quality decisions (Police Chief Magazine, 2009; Mentis et 

al., 2009; Willett et al., 2011; Kang et al., 2014). To facilitate the exchange of insights while 

simultaneously discouraging cognitive tunneling, I developed what I call a sensemaking 

translucence interface in my REFLECTIVA tool presented in Chapter 5. This interface consists 

of two main features: a hypothesis window and a suspect visualization.  

The hypothesis window is similar to the Alternative Competing hypothesis (ACH) 

interface (Convertino et al., 2008), in which users explicitly share their hypotheses and evidence 
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so that they can maintain awareness of one another’s insights and develop a joint mental model 

of the case. The hypothesis window is also designed to help reduce confirmation bias by 

including fields for reporting evidence that disconfirms each hypothesis (Goyal et al., 2016).  

The suspect visualization depicts the joint attention paid to each suspect thus far in the 

analysis and encourages collaborators to distribute their attention across multiple suspects 

instead of focusing prematurely on a single suspect who might not be the actual culprit. The 

suspect visualization changes automatically as analysts mention suspects in their hypotheses, 

notes or chat conversations. 

Summary 

This chapter has reviewed behavioral science work showing the challenges of individual 

and collaborative sense-making, discussed human-computer interaction tools that have been 

developed to facilitate crime analysis and problems with assessing the value of their features, and 

outlined the design goals of my dissertation.  The next chapter discussed the first contribution of 

this dissertation, the SAVANT sensemaking tool that allows researchers to investigate the 

benefits and costs of individual features such as visualizations, timelines, shared notepads, and so 

forth.  
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CHAPTER 3 

SAVANT: A MODULAR TOOL TO SUPPORT CRIME ANALYSIS  

As discussed in Chapter 2, when analyzing crimes, detectives and other police personnel 

examine witness and suspect interviews, crime scene reports, the coroner’s findings, and many 

other documents in order to detect an underlying pattern and identify a culprit (Gottlieb et al., 

1994; Santos, 2016). While existing analysis tools can improve sensemaking (Bier et al., 2010; 

Isenberg et al., 2012; Stasko et al., 2008; Kang et al., 2014; Convertino et al., 2009; Analyst’s 

Notebook/i2, 2011); CoMotion/General Dynamics, 2011; Palantir 2011), analysts find these 

tools overly complex (Heuer, 1999; Johnston, 2005; Chin et al., 2009; Goyal et al, 2013).  

However, determining how to simplify analysis tools is difficult because most studies have tested 

systems as a whole set of features rather than evaluated individual components (Stasko et al., 

2008; Bier et al., 2010; Convertino et al., 2009; Convertino et al., 2011). It is therefore not clear 

which components could be dropped from the system. 

In this chapter, I first present SAVANT (Sensemaking and Analysis using Visualization 

and Note-taking Tool), a system designed to support the sensemaking process in crime analysis. 

SAVANT was designed to provide a variety of specific analysis features that could be turned on 

and off individually in order to test the value of each feature.  Next, I use SAVANT to assess the 

value, separately and in combination, of two kinds of analysis features: a visualization tool that 

captures relationships among documents, and a notepad tool that allows users to take notes and 

link them to the original documents. Based on previous research about the utility of visualizing 

links between information objects and recording and summarizing information for the analysis 

process (Balakrishnan et al., 2008; Balakrishnan et al., 2010), I hypothesized:  
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H1: Analysts with a visualization tool that captures relationships among 

documents will be better able to solve a crime analysis task than analysts without 

a visualization.  

H2: Analysts with a note-taking tool that allows them to mark down their 

observations and snippets of text from documents will be better able to solve a 

crime analysis task than analysts without a notepad.  

While I expected each tool individually to be beneficial to analysis, it is less clear that 

having both together will improve performance over having either one alone. It might be that 

analysts will find manipulating two tools, in addition to finding and reading documents, too 

mentally taxing (e.g., Xie et al., 2000). Alternatively, the two tools might work synergistically 

with one another, leading to better performance than with either one alone. Thus, I posed this 

research question:  

RQ: What will be the benefit of providing both a visualization and a notepad tool?  

I examined the hypotheses and research question in a laboratory study in which students 

acted as detectives solving a serial killer crime.  The visualization significantly improved 

participants’ ability to detect key clues in the documents and identify the serial killer, whereas 

the notepad did not. Having both tools available provided no benefit over having just the 

visualization tool. The ways in which participants used the tool and their feedback helped me 

understand how different design features can interact with each other, and reduce overall task 

performance. 
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In the remainder of this chapter, I first describe the design of the SAVANT system, 

including the motivation for each of these features.  Then, I present the design, method, and 

results of my laboratory experiment.  I conclude with a discussion of the implications of this 

work for the design of analysis tools. 

The Savant System Design  

I designed SAVANT to aid sensemaking in analysis and overcome the difficulties of 

cognitive tunneling without sacrificing efficiency. I describe here the principles I followed in its 

design based on existing design principles for exploratory analysis (Perer et al., 2008) as well as 

technical details of the implementation.  

SAVANT’s user interface consists of five primary tools, each positioned in one pane, as 

shown in Figure 1. The directory (a) is a folder-like hierarchy of the document library, organized 

by cases. Double-clicking a document opens it in the reader pane (b), and multiple documents 

can be opened as reader pane tabs. The visualization (c) shows documents as nodes, with the 

currently open document in the center and the documents linked to it through word-co-

occurrence processing. The visualization can be zoomed, panned, and nodes can be moved 

around. The user can also open a document from the visualization by double-clicking a node. 

The notepad (d) is a text editor in which text can be copied and pasted directly from an open 

document as well as freely typed in. Documents can be dragged from the directory to the 

favorites (e) to be bookmarked for later reference. Movable dividers allow resizing all of these 

parts.  
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Figure 1. A screenshot of the SAVANT system, including the (a) directory, (b) reader pane, (c) 

visualization, (d) notepad, and (e) favorites. 

 

A prototype of SAVANT was implemented using Java Applets with all panes interfacing 

with each other using XML. The modularity of the system components allows testing the value 

of each component individually and in combination. I implemented both a desktop and a web-

based version, the latter enabling low startup costs by running on a browser, as well as easy 

extension to a collaborative mode (Billman et al., 2005) in which several analysts work 

simultaneously. In the study described below, I used the desktop version on a PC, reading the 

case documents from a local copy on the desktop.  

The analyst’s primary task is to review information distributed across files and 

documents. My first design principle was therefore to allow for easy reading of documents. 
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Beyond additional assisting tools, I implemented this principle by devoting a substantial part of 

the screen estate to reading documents (in Figure 1, I moved the dividers to magnify the 

visualization and notepad panes to show details), with scrolling capabilities as well as the ability 

to adjust the size of the reader pane for large documents. Quickly switching between multiple 

open documents is available through a tabbed layout of the reader pane. The directory also shows 

which documents are currently open.  

Another important goal of the design is to aid sensemaking when analyzing a large set of 

data, by allowing the extraction of key information, thereby reducing cognitive load. The user 

can highlight important text they find while reading a document in the reader pane, which is 

automatically copied to the notepad for easier access in the future instead of having to search 

through the entire document set again. In addition, the notepad serves for jotting down comments 

and hypotheses. In early prototypes, notepad comments were structured to contain links to the 

document from which they were extracted, time stamp, and other information. However, pilot 

testing demonstrated that unstructured free text, similar to scratch paper, was preferred. Another 

way to pull out important information at a larger granularity is by dragging an entire document 

from the directory to the favorites pane. Documents in the favorites serve as bookmarks and can 

be visually rearranged within the favorites pane.  

Perhaps the key design principle for helping analysts make sense of and solve a 

complicated problem is to help them discover relationships between documents. The design of 

the visualization is based on co-occurrences of words between any two documents. For any 

single document, the visualization shows all the documents in the dataset that contain words in 

common with the active document as edges between the document nodes. The thickness of an 
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edge is based on the number of unique words in common between the joint documents, using 

TF-IDF. Hovering the mouse pointer over an edge reveals a tooltip with the words that generated 

the edge. The left of the visualization presents a list of words that the active document has in 

common with the other documents in the dataset. Selecting one or more words in the list serves 

as a filter, showing only the edges between documents that share the selected words, as shown in 

Figure 2. The visualization was implemented using the open source Radial-Tree component of 

ProtoVis (Heuer, 1999), which integrates using XML with the rest of the Java code. 

 

Figure 2.  The visualization showing filtered results with documents 

from distinct cases that share a specific word. 
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In many analysis tasks, especially in crime investigation, it is seeing the links between 

documents from separate categories that is necessary to solve the task. For example, noticing that 

two separate crimes in different times and geographical areas share similar patterns in the crime 

scene findings may raise a flag to search for a common culprit. Documents in the visualization 

(and in the directory, for consistency) are color-coded based on the cases or categories to which 

they belong. This color-coding helps to reduce cognitive tunneling by highlighting documents 

from separate cases that are connected through edges in the visualization, as shown in Figure 2.  

Finally, given a large number of documents, reviewing all of them may be impossible 

given time constraints. In order to find important information, another design principle I 

followed, I built a search feature in the directory and in the visualization. These are two separate 

search functions: in the directory, the search function highlights those documents that match the 

search query, whereas the visualization only shows pairs of documents that both match the 

searched query. To support the search functions as well as constructing the links between 

documents in the visualization, the text in the documents is indexed using the open-source 

LUCENE indexer with a stop-word list (Hatcher et al., 2004).  

The SAVANT system was designed and developed iteratively, testing informally the 

value of each component and refining them accordingly. To evaluate, specifically, the 

visualization and the notepad tools, I carried out a laboratory experiment, described next.  

Laboratory Study Comparing Visualization and Notepad Tools 

To evaluate the features of SAVANT I asked participants to work on solving crime 

problems in which evidence for a serial killer were hidden among various documents. I 

manipulated the presence of two key features of the interface: the visualization tool, and the 
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notepad. This 2 by 2 between-subject design resulted in four conditions: visualization and 

notepad (VN); visualization, no notepad (V); no visualization, notepad (N), and; no visualization, 

no notepad (Control). The other components of the interface (directory, reader pane, and 

favorites) were available to all participants. Participants spent one hour working on the task, after 

which I measured their use of the various interface features, their cognitive load, and their ability 

to identify key clues and the serial killer.  

Participants 

Forty-one Cornell students (38 undergraduate and 3 graduate, 48% female) were 

recruited through flyers on campus. One participant was dropped from the analysis for lack of 

fluency in English. Only 29.3% reported watching crime dramas such as CSI or Law and Order 

once a week or more and only 14.6% read crime novels once a week or more. Participants were 

paid $22.50 for the 90-minute study.  

Materials 

I adapted crime analysis training materials, crime case documents (Appendix A) and 

surveys (Appendix B) from Balakrishnan and colleagues (Balakrishnan et al., 2008; 

Balakrishnan et al., 2010).  

Training materials. Training materials included a one-page description on how to solve 

crimes (e.g., look for motive, opportunity, and lack of alibi), a practice task involving a laptop 

theft, and a worksheet for reporting the possible culprit in the practice task.  

Task documents. Case documents consisted of two “active homicide” case folders, six 

“cold cases” (unresolved cases from the past), and general information. Each active case folder 

included six documents: a cover sheet, four witness and suspect interviews and a Coroner’s 
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report. Each cold case included a one-page document that summarized details about the victim, 

time, method, and witness interviews. Four of the six cold cases were “serial killer” cases, such 

that they demonstrated similar crime patterns (e.g., killed by a blunt instrument).  

However, the key clue to naming the serial killer was hidden in one of the active 

homicide interview documents: the culprit’s alibi for the active homicide was being observed 

riding the bus and carrying a toolbox. Additional documents included maps of the city, bus route 

diagrams, crime statistics, and a police department organization chart. Consulting the maps and 

bus routes enabled seeing that all cold cases were located on the bus route ridden by the serial 

killer. All active and cold case documents as well as the bus routes were included in the system’s 

directory pane; the maps and the organization chart were provided on paper for better readability.  

Crime-solving tools. To help participants solve the crimes, participants were given paper 

copies of an MO (modus operandi) worksheet in which they could indicate key details pertaining 

to the crime such a motive, opportunity, and alibi, a timeline, and a suspect list where they could 

enter names of suspects.  

Post-task report. A paper-based post-task report included spaces to indicate for each 

crime the prime suspect (if identified), any known attributes of the suspect, the victim(s), the 

MO, and location.  

Post-task survey. A modified version of Balakrishnan et al.’s (2010) online survey was 

distributed after participants completed the analysis task. The survey included demographic 

questions about gender, occupation, age, ethnicity, and education level. In addition, five seven-

point scales adapted from the NASA TLX survey (Hart et al., 1988), were used for rating how 

much mental demand, temporal demand, effort and frustration participants felt during the task 
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and how well they thought they performed. The survey also included 22 multiple-choice 

questions about the crimes designed to measure how many key clues they had identified.  

I also developed a series of questions about features of the interface. I used five-point 

scales to rate the usefulness of the various components of the system – the directory, reader pane, 

favorites, visualization and notepad, as well as the search feature. Participants typed in additional 

thoughts about the user interface and their experience using open-ended questions.  

Procedure 

Upon arriving at the lab, participants were randomly assigned to one of the four 

conditions, resulting in 10 participants per condition. They were first given an overview of the 

study, signed consent forms, and performed the practice task. Participants were then seated at a 

computer with a 25” monitor presenting the SAVANT system in full screen. The experimenter 

demonstrated each feature of the system available in the participant’s condition (directory, reader 

pane, and favorites for all participants; visualization and notepad where applicable). With the 

experimenter’s guidance, participants practiced interface tasks such as opening a document, 

highlighting text and copying it into the notepad, searching the directory and clicking on filters in 

the visualization to ensure they understood how each feature worked.  

Participants then proceeded to work on the homicide cases. Unlike previous studies that 

used the same set of documents (Balakrishnan et al., 2008; Balakrishnan et al., 2010), 

participants were not told that a serial killer was hidden in the documents, only that they had one 

hour to solve as many cases as they could of the two active and six cold cases. While working on 

the task, the SAVANT system logged every time the mouse pointer entered and exited the 

different components (directory, reader pane, favorites, visualization, or notepad). After 60 
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minutes or earlier if the participant indicated that they had finished the task, they switched to 

completing the post-task report and the survey, after which they were paid and excused. The 

whole session lasted 90 minutes.  

Measures  

Performance. I assessed performance based on the post-task report. I scored whether or 

not participants identified and named the serial killer, indicating which crimes he was 

responsible for. Participants received a score of 1 if they correctly identified the serial killer and 

0 otherwise.  

Clue detection. As another measure of performance, I assessed participants’ detection of 

key clues in the crime scenario. Based on the post-task report, I counted how many clues, out of 

9, they described in the report (clue recall). In addition, from the post-task survey I counted the 

number of correct answers of 10 questions pertaining to the serial killer, each having one correct 

answer out of four (clue recognition).  

Connections between documents. One question asked participants if they identified 

connections between the cold cases, and another question asked whether participants saw a 

connection between the cold cases and the active case holding the key clue. A participant’s score 

of 1 indicated answering “yes” on both questions, 0.5 for answering “yes” on one question, and 0 

for answering “no” on both.  

Cognitive load. Four of the five NASA-TLX scales (excluding perceived performance) 

were highly correlated and formed a reliable scale (Cronbach’s alpha = .80); responses were 

averaged to create my measure of cognitive load.  



 

 

 

32 

Tool usefulness. Participants’ ratings of the usefulness of the five key components of the 

interface (directory, reader pane, favorites, visualization, notepad) and the three search 

capabilities (directory, reader pane, visualization) on five-point scales were used as direct 

measures of their tool preferences.  

Tool use. I approximated the time spent using each component available to participants in 

the tool by calculating from the system logs the total time duration that the mouse pointer visited 

that pane. I removed two values that were more than 2.5 SD above the mean, which could have 

been errors. I divided these times by the total amount of time a participant spent working on the 

task to create percentage time measures.  

Results  

Overall, the findings suggest that using the visualization tool helped solving the analysis 

task, supporting H1: participants using the visualization were more likely than those not using it 

to find the serial killer, they detected more clues, and they were better able to see relationships 

between documents. Conversely, participants using the notepad were less likely to solve the task, 

detected fewer clues, and were less able to see relationships between documents, rejecting H2. In 

response to the research question, I did not find evidence that the visualization and notepad tools 

together had an added benefit beyond the visualization tool alone. Still, my findings point to 

ways in which participants found each of these tools useful for the analysis task, and to ways in 

which these tools can be improved.  

Task performance  

Overall, participants with the visualization tool (80%) were more likely to succeed at 

identifying the serial killer than participants without the visualization tool (40%). In contrast, 
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participants with the notepad were somewhat less likely to identify the serial killer (50%) than 

participants without the notepad (70%), and participants who had both the notepad and the 

visualization tool were less likely to identify the serial killer (70%) than those with the 

visualization tool alone (90%) (See Figure 3). In other words, it seems that the visualization 

improves task performance, whereas the notepad undermines performance.  

 

Figure 3. Percentage of participants correctly identifying the serial killer  

as a function of visualization and notepad condition. 

 

I tested these relationships using a binary logistic regression model in which success was 

a binary dependent measure and visualization condition, notepad condition, and their interaction 

were used as predictors. Results showed a borderline significant effect of visualization condition 

in the direction shown in Figure 3 (B=2.20, S.E.=1.23, Wald=3.20, p=.07), but no effect of 

notepad (B=-.85, S.E.=.94, Wald=.82, p=.37 and no interaction (B=-.50, S.E.=1.57, Wald=.10, 

p=.75. These results provide partial support for H1, and no support for H2.  
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Clue detection  

I measured clue detection in two ways: free recall of the nine key clues in the post-task 

reports and clue recognition in 10 multiple-choice questions in the post-task survey. These two 

measures were highly correlated with one another (r=.70, p<.001), and both were also highly 

correlated with successfully identifying the serial killer (for clue recall, r=.77, p<.001; for clue 

recognition, r=.68, p<.001). The findings on both clue recall and clue recognition support H1, do 

not support H2, and show no specific benefit or detriment for using the visualization and the 

notepad tools together.  

 

Figure 4. Number of clues recalled (out of 9) as a function of visualization and notepad condition. 

(Error bars represent standard errors of the mean.) 

Clue recall. Clue recall scores were analyzed in a 2 (visualization condition) by 2 

(notepad condition) ANOVA. When participants had the visualization tool available, they 

recalled significantly more clues (F[1,39]=19.43, p<.001). Having the notepad tool available, 

however, had no significant effect (F[1,39]=1.12, p=.30). There was also no significant 

interaction between conditions (F[1,39]<1, n.s., as shown in Figure 4). 
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Clue recognition. The results using clue recognition in the multiple-choice questions 

showed a similar pattern. A 2 (visualization condition) by 2 (notepad condition) ANOVA 

showed that having the visualization tool led to significantly greater performance on these 

questions (F[1,39]=8.49, p<.01) but having the notepad present had no effect (F[1,39]<1, n.s.). 

There was also no significant interaction between visualization and notepad condition, as shown 

in Figure 4 (F[1,39]<1, n.s.).  

Relationship detection 

Similarly, having a visualization tool significantly increased participants’ ability to detect 

relationships among documents, whereas having the notepad had no effect. A 2 (visualization 

condition) by 2 (notepad condition) ANOVA showed a significant effect for visualization tool 

(F[1,39]=14.57, p=.001), no effect of notepad (F[1,39]=1.62, p>.20) and no interaction 

(F[1,39]=1.62, p>.20). These findings, again, support H1, show no support for H2, and provide 

no evidence for benefit of both tools together over one alone (RQ).  

Tool use 

The results thus far refer to the explicit value of the visualization and notepad tools for 

task performance measures. Beyond task performance and to inform future design, however, I 

was also interested in understanding how these tools were used. One of these aspects is the time 

spent on each tool.  

All participants had the option of working with three of the tool components: directory, 

reader pane, and favorites. Depending on their condition, participants also had the option of 

working with the visualization or notepad tool components. As can be seen in Figure 5, 

participants spent the most time reading the case documents, as I initially expected, purposely 
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designing the reader pane to be the largest element of the user interface. When the visualization 

tool was available they spent about 11% of their time on it, and when the notepad was available 

they spent about 9% of their time on it.  

 

Figure 5. Percentage of time spent using the Directory, Reader pane, Favorites, Visualization (if 
available) and Notepad (if available). (Error bars represent standard errors of the mean.) 

 

Having both the visualization and the notepad did not influence the amount of time 

people spent using either the visualization or the notepad. Two one-way ANOVAs comparing 

time using the visualization tool with and without the notepad and time using the notepad tool 

with and without the visualization showed no significant differences (both F[1,19]<1, n.s.).  

Although it seems from Figure 5 that the more tools available, the less time spent on the 

documents, this was only true for the notepad tool. I ran a 2 (visualization condition) by 2 

(notepad condition) ANOVA using time on the documents as a dependent measure. There was 

no effect of visualization condition (F[1,39]<1, n.s.) but a significant effect of notepad condition 

(F[1,39]=7.95, p<.01). There was no interaction (F[1,39]<1, n.s.).  
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The amount of time spent on the visualization had no impact on how many clues 

participants detected. I ran a one-way ANOVA using only participants who had the visualization 

tool. Notepad tool presence vs. absence was used as a between-subjects factor and percentage of 

time spent on the visualization was used as a covariate. Results showed that neither factor 

affected the number of clues detected (F<1, n.s., for both main effects and the interaction). This 

suggests that some other factor of the visualization tool, rather than the time spent on it, helped 

participants in finding clues and better solving the serial killer task.  

 

Figure 6. Mean ratings of tool usefulness. Higher values indicate greater usefulness. 

(Error bars represent standard errors of the mean.) 

 

Perceived tool usefulness 

Finally, participants rated the usefulness of three tools common to all conditions 

(directory, reader pane, favorites) and the tools specific to their condition (notepad or 

visualization, if available) on 5-point scales. As shown in Figure 6, the directory and reader pane 

were rated as most useful, the notepad and visualization (when available) as somewhat less 

useful, and the favorites as least useful.  
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In addition to these findings, participants’ open-ended responses in the survey shed light 

on the benefits and downsides of these tools for working on the analysis task and for the overall 

user experience. Consistent with the quantitative ratings, participants said they found value in the 

visualization for understanding how different pieces of information were related. For example, 

one participant said,  

I was surprised, actually, how useful the visualization turned out to be. For just 

looking a one case, it isn’t very useful, but it is useful for trying to find links 

between cases (P10, male, V)  

At the same time, participants saw limitations in the visualization in its current form. For 

example, they pointed out that nodes could be linked based on randomly shared words between 

the documents, which could lead to depicting too many edges:  

[In the visualization] there are misleading connections at times that are simply 

based on the words that are listed in groups of documents. (P39, male, VN)  

The visualization was useful for some of the cases, but because it showed so many 

connections it seemed a little too imprecise to be extremely useful. (P20, female, 

V)  

Similarly, participants saw value in the notepad tool. They liked the ability to collect, 

organize and revisit pieces of information in one place in a flexible, free-form structure:  
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I liked the notepad because it allowed me to organize with much more freedom in 

style I was not bounded by the confines of the program nearly as much. (P5, male, 

N)  

I used the notepad a lot to gather my notes and see and reread information that I 

had highlighted. It was helpful to go back and read what I had written. (P11, 

female, VN)  

At the same time, participants pointed to limitations in the notepad’s editing 

functionality, lack of sketching capabilities, and annotations that were decontextualized from the 

documents from which they were taken:  

Some sort of other features would have been nice (to help with organization). 

Highlight, different colors, bolding, italicized, etc. (P24, female, N)  

The notepad window was not useful because I found it more effective to view the 

important information in the context of the document where I found it, not by 

itself. (P23, male, N)  

It would be nice to be able to scribble on or add comments to files (P10, male, V)  

The design of the notepad as a simple text editor might have missed the richness of plain 

paper that can be freely scribbled upon. These comments point to ways in which a note-taking 

tool could be better designed and perhaps overcome the lack of support in performing the task. 

In general, participants’ ratings of the usefulness of the three system features common to 

all four conditions did not vary as a function of which other tools they had available to them. The 
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one exception was that participants without the notepad rated the favorites tool significantly 

more useful (M=2.84, SD=1.38) than participants with the notepad (M=1.72, SD=1.13); 

F(1,39)=6.85, p=.01. However, ratings of Favorites by participants in all conditions were quite 

low. In the open-ended survey responses, several participants mentioned that the data set was 

small enough and the directory was so well-organized that no additional organization of the 

documents in the Favorites was necessary.  

Cognitive Load 

Participants' ratings of their mental workload during the task indicated that they found it 

somewhat taxing, with means just over 4 on the seven-point scale (control: M=4.08, SD=1.08; V: 

M=4.24, SD=.91; N: M=4.42, SD=.96; VN: M=4.56, SD=.80). A 2 (visualization condition) by 2 

(notepad condition) ANOVA on these scores revealed no significant effect of visualization tool 

(F[1,39]<1, p=.62) or notepad (F[1,39]=1.22, p=.28), and no interaction (F[1,39]<1, p=.97). 

However, greater percentage time spent using the notepad was significantly correlated with 

higher TLX scores (r=.47, p<.05). There was no relationship between time spent using the 

visualization tool and TLX scores (r=-.001, n.s.). These findings suggest that having both tools 

rather than a single tool did not create cognitive overload.  

Discussion  

In this chapter I first presented the design of the SAVANT system that takes a modular 

approach to supporting sensemaking in crime analysis.  Individual features of SAVANT such as 

visualizations, notepads, and timelines, can be selectively turned on and off.  Using this platform, 

I then conducted a controlled laboratory experiment looking at how two specific features of the 
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tool, a visualization tool and a notepad) facilitate or hinder the analysis task, how their users 

perceive them, and how I can learn from mistakes to provide analysts with better tools.  

As H1 predicted, the visualization tool helped people identify and recall key clues that a 

serial killer was responsible for many of the homicides they were investigating and to identify 

the culprit. While it is unclear how the visualization tool led to improved performance, my 

observations of the experimental sessions suggest several ideas. Interacting with the visualization 

might have made it more obvious to participants that there were in fact connections among the 

documents from separate crime cases, and thus potentially a single underlying culprit that they 

should look for among the documents. In addition, the visualization may have given helpful 

starting points for the investigation, shaping the paths participants took through the documents 

instead of reading them in the order in which they were organized in the directory. Finally, the 

visualization might also have shaped the strategies participants used to investigate the homicides, 

for example skimming many documents linked in the visualization to identify underlying 

patterns, rather than reading each document in depth, a more cognitively taxing task.  

Counter to H2, I found that the notepad tool provided no task performance benefits to my 

participants, alone or in combination with the visualization tool (in response to RQ), even though 

participants found it subjectively as useful as the visualization tool. This feature, like the 

visualization tool, underwent substantial preliminary testing and refinement prior to the study. 

Based on my findings, I have several thoughts about why the resulting feature provided less 

value than I had hoped. One possibility is that while people successfully used the notepad to 

organize their thoughts, as they noted in the open-ended responses, it slowed down their reading 

of the documents themselves, which led to no net benefit for analysis. Similar to other designs 
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(Pioch et al., 2006; Wright et al., 2006), I plan to explore ways in which a notetaking tool can be 

designed not only for collecting annotations, but also for flexibly organizing and linking them to 

each other and to other information objects.  

Limitations and Further Directions 

The initial SAVANT prototype focused on only some of the features that analysts would 

need for collecting data, identifying relationships among information entities, and making 

decisions. The notepad, for example, enabled capturing snippets of text from the documents and 

typing in free-form text. However, the current version of the tool lacks more extensive 

capabilities for diagramming relationships uncovered during the process of solving the crimes, 

which have been found to be beneficial for sensemaking (Pioch et al., 2006; Wright et al., 2006). 

Such a tool may be similar to scratch paper or a whiteboard, where the user can create diagrams 

by dragging information objects and creating new ones, drawing arrows and constructing 

connections, and highlighting objects they find important. Furthermore, unlike physical paper or 

whiteboard, this tool will have the power of connecting its content to the original dataset. In the 

next chapters, I will discuss ways in which an annotation and sketching tool can be designed to 

not only provide perceived value to users, but also improve their performance.  

Another limitation of the current prototype is its focus on the individual analyst, with no 

means for sharing documents, notes, or states of the visualization with others. In Chapter 4, I will 

discuss how solo SAVANT was adapted to create a simpler collaborative version, offering 

analysts similar semblance to paper-based drawing by using shared free-form analytic space and 

digital Post-It Notes. The collaborative version of SAVANT, builds upon the same modular 
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nature of the solo version presented in this chapter, enabling customization of feature sets as 

identified to be necessary for the task at hand.   
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CHAPTER 4 

COLLABORATIVE SAVANT: DESIGNING FOR IMPLICIT SHARING OF 

INFORMATION DURING CRIME ANALYSIS 

As discussed in Chapter 1, the Boston Marathon Bombing suffered from lack of 

communication across team members, particularly between U.S. intelligence agencies and their 

Russian counterparts. Similarly, in 2007, Robert Pickton was convicted for six murders of 

women in British Columbia and connected to 24 others in the Vancouver region (Pickton Report, 

2007). The Vancouver Police Department (VPD) came to suspect that the cases involved a serial 

killer, but they did not communicate this hypothesis to their cooperating partner, the Royal 

Canadian Mounted Police (RCMP). Furthermore, missing women reports filed with one agency 

were not shared with the other except when specific requests were made. These problems 

potentially delayed the investigation and led to more victims. In these and many similar cases a 

lack of communication led to a loss of important information that might even have prevented a 

crime.   

In this chapter, I build on my work with the solo version of SAVANT (Chapter 3) by 

developing a collaborative version and using it to examine design solutions to the challenges of 

information sharing.  Specifically, I examined the potential value of implicit sharing of 

intermediate analytic insights, which reduces the burden on the analyst to identify when and 

what information to share with partners. I focus on supporting the sharing of insights (e.g., 

hypotheses about who committed a crime, which analysts often find valuable for joint analysis 

(Convertino et al., 2011) rather than raw data and facts (e.g., clues from missing women reports) 
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because the latter is often subject to institutional policies (e.g., Cabrera, 2002), organizational 

policies and norms of sharing (Constant et al., 1994).  

In the collaborative version of SAVANT, analysts make their own notes about insights 

from their own evidence.  Depending on how the system is configured, those notes are either 

explicitly shared or automatically shared with their partners. When sharing is implicit 

(automatic), this removes the effort involved in assessing whether or not to share an insight and 

then explicitly placing it in a public workspace (Convertino et al., 2011; Hayne et al., 2011). My 

hypothesis is that because implicit sharing will reduce effort and increase sharing and awareness, 

analysts working collaboratively will perform better when implicit sharing is available than when 

it is not: 

H1. Participants using implicit sharing of notes will perform better on a 

collaborative analysis task than participants without implicit sharing of notes.  

Implicit sharing may also shift the value of certain elements of the analysis workspace. 

Individual features of analysis tools emphasize different aspects of sensemaking, and small 

changes to these features (such as making them shared vs. individual) can affect analysts’ 

sensemaking strategies (Kang et al., 2011). A tool used to capture notes and insights may 

therefore become more valuable when it is shared with other analysts. Similarly, a workspace 

viewed only by a single analyst may be less valuable than one that multiple analysts can view. If 

analysts perceive that these tools are more valuable, they might use them more, interacting with 

their features and manipulating the data in them.  
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I hypothesize that the availability of implicit sharing of notes will therefore affect both 

people’s evaluations of the features of the tool and their use of these features.  

H2a. Participants using implicit sharing of notes will rate the usefulness of 

collaborative features of the tool higher than participants without implicit sharing 

of notes.  

H2b. Participants using implicit sharing of notes will interact with collaborative 

features of the tool more than participants without implicit sharing. 

Implicit sharing also has the potential to improve the experience of working together. For 

example, sharing document collections was shown to be valuable to get novice analysts up to 

 
Figure 7. The Document Space showing (clockwise, from top-left) the directory of crime case documents, a 

tabbed reader pane for reading case documents, a visual graph of connections based on common entities in the 
dataset, a map to identify locations of crimes and events, and a timeline to track events. 
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speed with the status of what others are doing (Convertino et al., 2011). In medical settings, 

implicitly shared awareness information can ease the flow of communication and establishment 

of common ground between clinical staff members (Bardram et al., 2006; Paul et al., 2010). If 

implicit sharing mitigates barriers of collaborating on a task, then individuals should have a 

better collaboration experience, compared to when implicit sharing is not available: 

H3. Participants using implicit sharing of notes will rate their team experience 

higher than participants without implicit sharing of notes.  

By changing the amount and type of information available, implicit sharing may affect 

the mental demand of the crime-solving task. On the one hand, a shared workspace may reduce 

the time and effort put in the analysis task compared to working alone (Fisher et al., 2012). 

Furthermore, implicit sharing helps establish common ground (Willett et al., 2011), and thus 

 
Figure 8. The Analysis Space showing Stickies that are implicitly shared between analysts (color-
coded by user), connections between Stickies via arrows, and piles of multiple Stickies. Explicit 

sharing is supported via the chat box at the bottom left. 
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might reduce analysts’ need to explicitly formulate messages and communicate information, 

thereby reducing their workload. On the other hand, shared workspaces might increase 

communication costs (Hayne et al., 2011). Seeing partners’ activity might divert attention from 

one’s own thoughts and increase the need for explicit discussion of process and data, especially 

when shared insights are connected to unshared data (Convertino et al., 2011). Since the 

direction of impact is unclear, I pose two research questions: 

RQ1. How will implicit sharing of notes affect participants’ cognitive workload? 

RQ2: How will the availability of implicit sharing affect the amount of 

information exchanged via explicit channels? 

Collaborative SAVANT 

I adapted SAVANT system (Goyal et al., 2013) to make it suitable for collaborative 

analysis. SAVANT has two main components, the Document Space (Figure 7) and the Analysis 

Space (Figure 8). The Document Space has a number of features for data exploration and 

discovery. The document library and reader pane are for viewing and reading crime case reports, 

witness reports, testimonials, and other documents. A network diagram visualizes connections 

between documents based on commonly identified entities like persons, locations, and weapon 

types. The Document Space also provides a map of the area where crimes and events were 

reported and a timeline to assist in tracking events over time. Users can highlight and create 

annotations in the text of documents, locations on the map, and events in the timeline. 

Such annotations automatically appear in the Analysis Space, an area for analysts to 

iteratively make and reorganize their notes until they see emerging patterns that lead to 
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hypotheses (Kang et al., 2011). These annotations are represented as digital Stickies (shaped as a 

Post-It note, a familiar metaphor preferred by analysts (Chin Jr. et al., 2009), which as in other 

analysis tools (Hayne et al., 2011; Kang et al., 2011; Pioch et al., 2006; Wright et al., 2006) are 

linked to the original document, map location, or timeline point where they were created. 

Stickies can also be created directly in the Analysis Space, unconnected to specific documents. 

Analysts can move Stickies around, connect Stickies together, or stack them in piles.  

The Analysis Space supports collaboration through both explicit and implicit information 

sharing. For explicit sharing, a chat box at the bottom-left corner allows analysts to discuss their 

cases, data, and insights and to ask and answer questions. For implicit sharing, the Analysis 

Space shows other analysts’ Stickies in real time as they are created and organized in the space. 

Stickies are color coded by the analyst who created them, but anyone can move, connect, or pile 

anyone’s Stickies. Mouse cursors are independent of each other, while dependencies between 

Stickies are handled by the server on a first-come-first-serve basis. The server updates the 

interface every second.  

Method 

I designed a laboratory experiment in which two-person teams attempted to solve a set of 

crimes in a simulated geographically distributed environment. The task and materials were 

nearly identical to those used in Chapter 3. The crime cases were distributed between the 

partners, with a hidden serial killer that had to be identified. Half of the pairs worked on the task 

using an interface that provided implicit sharing of notes. The other half worked on the task 

using an interface without implicit sharing. I collected data via post-task surveys, participant 

reports, and computer logs.  
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I created two versions of SAVANT for this study. In the implicit sharing condition, 

Stickies in the Analysis Space were automatically shared as described above: there was no 

private workspace for analysis, only a public one. In the no implicit sharing condition, partners 

only see their own Stickies in the Analysis Space: there is no public workspace, only private 

ones for each analyst. The chat box is available in both conditions to support explicit sharing. 

Participants 

Participants consisted of 68 students at Cornell, a large northeastern university (22 

female, 46 male; 85% U.S. born). Participants were assigned randomly into pairs, and each pair 

was randomly assigned to either the implicit sharing or the no implicit sharing condition. 

Materials 

The experimental materials were adapted from Balakrishnan et al. (Balakrishnan et al., 

2008) and consisted of a set of practice materials and a primary task, similar to those used in 

Chapter 3. A practice booklet with a set of practice crime case documents introduced participants 

to the process of crime analysis and highlighted the importance of looking for motive, 

opportunity, and the lack of alibi. The primary task was created to be reasonable, but difficult, 

for novice analysts to complete in a limited time. The main task materials were a set of fictional 

homicide cases. There were six cold (unresolved) cases, and one current (active) case. Each of 

the cold cases included a single document with a summary of the crime: victim, time, method, 

and witness interviews. Four of these six cold cases were “serial killer” cases. These four had a 

similar crime pattern (e.g., killed by a blunt instrument). The active case consisted of nine 

documents: a cover sheet, coroner’s report, and witness and suspect interviews. Additional 

documents included three bus route timetables and a police department organization chart. 
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The documents were available through the SAVANT document library and were split 

between the two participants such that each had access to 3 cold cases (2 serial killer cases, 1 

non-serial killer case) and 5 documents from the active case (both participants had access to the 

cover sheet). The additional documents were available to both participants. Overall, each 

participant had access to 13 documents, of which 6 were shared with the other participant and 7 

were unique.  

Twelve clues for detecting the serial killer were dispersed across the 20 documents with 

40 suspects/witnesses, equally distributed between the two participants with four in common and 

four unique to each partner, following a hidden profile task paradigm (Stasser et al., 1985). The 

key clue to naming the killer was included in one of the witness reports of the active case, 

although the active case was not one of the serial killer cases. The task for this study was 

carefully designed to include data and aspects that are similar to real-world crime cases that 

remain unsolved, at a scale that could be analyzed in a one-hour session, and at a level of 

difficulty where many people are unable to solve the crime (Balakrishnan et al., 2008; Goyal et 

al., 2013). 

Equipment 

Two workstations (Intel Core i7 processor, 16 GB RAM) were connected to the Internet 

and ran SAVANT. Each was connected to two 25” monitors, the left showing the Document 

Space, and the right showing the Analysis Space. SAVANT logged keyboard and mouse activity 

as locally stored time-stamped CSV files. To simulate remote collaboration, the workstations 

were in separate cubicles to prevent eye contact and participants wore noise-cancelling 

headphones to prevent noises (e.g., keyboard and mouse clicks) from affecting each other.  
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Procedure 

After being seated in separate cubicles, participants signed a written consent form, and 

read the training materials and performed the practice task individually for about 10 minutes. 

Participants then received a 10-minute tutorial on the SAVANT interface. The experimenter 

explained the different parts of SAVANT using example tasks that participants would perform.  

Then, using SAVANT, participants worked as a team on the primary task to identify 

cases associated with a serial killer, name the serial killer, and find as many clues as possible in 

60 minutes. At the end of the task, each participant received a paper report form at their 

workstation to fill out with name of the serial killer, associated cases, and the clues they could 

recall that would incriminate the killer. They then completed an online survey with questions 

about clue recognition, the utility of the interface, the collaboration experience, cognitive load, 

analytic ability (for control) and demographic information.  

Measures 

The following measures, similar to Study 1, were taken from data collected from system 

logs of interface use, post-task surveys and written reports. 

Task performance 

To address H1, which predicts that implicit sharing would improve task performance, I 

used three measures. The first two are based on participants’ ability to remember clues pertaining 

to identifying the serial killer, and the third is whether they were able to name the killer.  

Clue recall: At the end of the session, each participant wrote down as many clues as they 

could recall supporting their hypothesis about the serial killer. A participant’s clue recall score 
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was the number of correct clues written down, similar to the measure used by Convertino et al. 

(2008, 2011). 

Clue recognition: The post-task survey included multiple-choice questions, each related 

to one of the 10 clues hidden in the dataset. For example, “On the day of his wife’s murder, Ron 

Raffield claimed that A. He’d run into an old acquaintance on the bus. B. He’d been out of town 

on a business trip. C. He’d been tied up in a meeting all afternoon. D. He’d tried to call Darlene, 

but she never answered her cell. E. I do not know.” A participant’s score was the number of 

correct answers to these 12 questions.  

Solving the case: At the end of the session, each participant wrote a report in which they 

were asked to name the serial killer. I counted this as binary variable: either the serial killer was 

identified (1) or not (0).  

Perceived usefulness of SAVANT features 

In order to answer H2a, I asked several questions probing participants’ evaluations of 

features of the SAVANT system in the post-task survey. This is similar to other studies that 

examined the usefulness of system features (Convertino et al., 2008; Wright et al., 2006). 

Stickies: Four 5-point questions asked participants about the degree to which the Stickies 

promoted discussion, helped achieve understanding, and communicate ideas. For example, “The 

Stickies in Analysis Space helped me understand what my partner was thinking.” These four 

questions formed a reliable scale (Cronbach’s α=0.77) and were averaged to create a measure of 

Stickies’ usefulness. 

Analysis Space. Five 5-point questions asked about the degree to which the Analysis 

Space helped participants feel physically, cognitively, and emotionally closer to their partner, 
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helped them work with their partner, and helped them understand their partner’s activities. These 

five questions formed a reliable scale (Cronbach’s α=0.85) and were averaged to measure 

Analysis Space usefulness.  

Use of SAVANT features 

In order to answer H2b, I used system logs to derive In order to answer H2b, I used 

system logs to derive measures of participants’ actual use of features in the Analysis Space, 

including the number of connections they made between Stickies, the number of piles they 

created, and the overall number of movements (editing, adding, deleting, connecting, or piling) of 

Stickies.  

In the implicit sharing condition participants could manipulate both their and their 

partner’s Stickies, whereas in the non-implicit sharing condition each participant could only 

manipulate their own Stickies. Therefore, these three measures are at the pair level, aggregating 

both participants’ actions in a session. 

Team experience 

The post-task survey contained ten survey questions about the quality of the collaboration 

(e.g., “It was easy to discuss the cases with my partner,” “My partner and I agreed about how to 

solve the case”). These ten questions formed a reliable scale (Cronbach’s α=0.84) and were 

averaged to create a team experience score, to answer H3. This measure is similar to (Bier et al., 

2010; Convertino et al., 2008) who used a post-task questionnaire to assess quality of 

communication within the group.  
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Cognitive load 

In order to answer RQ1, the post-task survey contained five questions based on the 

NASA TLX (Hart et al., 1988) that asked participants to rate how mentally demanding, 

temporally demanding, effortful, and frustrating the task was, as well as their subjective 

performance. After inverting the performance question, these five responses formed a reliable 

scale (Cronbach’s α=0.76). Participants’ responses were averaged to create one measure of 

cognitive load. 

Explicit sharing 

SAVANT logged the chat transcripts for each session, which were then cleaned to 

remove extraneous information like participant identification and timestamps. To answer RQ2, 

explicit sharing was measured at the pair level as the number of words exchanged in the chat box 

during a session. This is similar to (Hayne et al., 2011), who assessed the number of chat lines 

exchanged during the experimental session. 

Results 

I present the findings in six sections. First, I discuss effects of implicit sharing on my 

three task performance measures. I then consider how it affected subjective ratings of SAVANT 

features and their use, perceptions of team experience, cognitive load, and explicit information 

sharing 
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a       b           c 

 

Figure 9. Results a) Task performance, (b) Perceived usefulness of Stickies and Analysis Space, and (c) 
Number of connections and piles made in a session, each by interface condition. Error bars represent 

standard errors of the mean. 

 

Task performance 

H1 proposed that pairs would perform better when implicit sharing was available than 

when it was not available. To test this hypothesis, I conducted mixed model ANOVAs, using 

clue recall and clue recognition as my dependent measures. In these models, participant nested 

within pair was a random factor and condition (implicit vs. no implicit sharing) was a fixed 

factor. 

Clue recall. There was a significant effect of implicit vs. no implicit sharing on the 

number of clues participants recalled in the written report (F[1, 66]=6.54, p=0.01). As shown on 

the left side of Figure 9a, participants in the implicit sharing condition recalled more clues 

(M=3.47, SE=0.37) than those without implicit sharing (M=2.11, SE=0.37). Clue recall 

difference was also significant at the team level (t[32]=2.03, p=0.05), with teams with implicit 

sharing recalling more clues (M=4.71, SE=0.58) than teams without implicit sharing (M=3.11, 

SE=0.52). Given the large Cohen’s d (3.68 for individuals, 2.90 for teams) and the fact that these 
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clues were buried in 20 documents with many information pieces, I regard this as a meaningful 

increase in clue recall, paralleling other work that has found increases in task-relevant recall in 

shared workspaces (Convertino et al., 2011 , McCarthy et al., 1991). 

Clue recognition. The right-hand side of Figure 9a shows participants’ performance on 

the multiple-choice clue recognition questions in the post-task survey. There were no statistically 

significant differences in clue recognition (F[1, 66]=3.52, p=0.06) between individuals in the 

implicit sharing (M=3.20, SE=0.28) and no implicit sharing conditions (M=2.44, SE=0.28). This 

was also consistent at the team level (t[32]=0.80, p=0.42) between teams with implicit sharing 

(M=5.35, SE=0.41) and no implicit sharing (M=4.82, SE=0.51).  

Solving the case. I also examined whether interface condition affected the likelihood that 

participants could solve the crime. Since solving the case was a binary dependent variable, I ran 

a binomial logistic regression with condition as the independent variable and pair as the random 

effect variable. There was no significant difference between the implicit sharing condition 

(M=0.62, SE=0.11) and the no implicit sharing condition (M=0.74, SE=0.01; Wald Chi Square 

[1, 68]=0.57, p=0.45). Sharing knowledge manually did not improve answer accuracy in 

(Convertino et al., 2011) but sharing knowledge implicitly in a small experiment did increase 

answer accuracy in (Hayne et al., 2011). 

Perceived usefulness of SAVANT features 

H2a stated that participants would perceive SAVANT features as more valuable when the 

interface supported implicit sharing than when it did not. I analyzed participants’ ratings of the 

usefulness of Stickies and of the Analysis Space using mixed model ANOVAs with participants 
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nested within pair as a random factor and interface condition (implicit sharing vs. no implicit 

sharing) as a fixed factor.  

As shown in Figure 9b, H2a was supported. Participants in the implicit sharing condition 

viewed Stickies as more useful (M=4.22, SE=0.12) than those in the no implicit sharing 

condition (M=2.90, SE=0.12; F[1, 66]=53.1, p<0.001). Participants in the implicit sharing 

condition also rated the Analysis Space as more useful (M=3.86, SE=0.14) than those in the no 

implicit sharing condition (M=2.34, SE=0.14; F[1, 32]=55.39, p<.001). 

Use of SAVANT features 

H2b predicted that the availability of implicit sharing would lead participants to interact 

more with Stickies in the Analysis Space than without implicit sharing. Using system logs, I 

counted the number of connections between Stickies, piles of Stickies, and overall Analysis 

Space manipulations that pairs made over the course of a session. Overall use of connections and 

piles was quite low and not normally distributed, so I did not perform ANOVAs on this data. 

Descriptive statistics (Figure 9c) suggest that in the implicit sharing condition, pairs created more 

connections (M=5.24, SE=3.01) and more piles (M=16.59, SE=4.16) than in the no implicit 

sharing condition (connections: M=2.51, SE=3.38; piles: M=5.37, SE=3.63). Participants in the 

implicit sharing condition also performed more total manipulations of Stickies (M=1361.85, 

SE=149.02) than in the no implicit sharing condition (M=624.79, SE=81.95). 

Team experience 

H3 predicted that participants would rate the quality of their collaborations with their 

partners higher when they could implicitly share information compared to when they could not. 

To test this hypothesis, participants’ team experience scores were analyzed in a mixed model 
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ANOVA in which participant nested within pair was a random factor and condition (implicit 

sharing vs. no implicit sharing) was a fixed factor. H3 was not supported (F[1, 36.30]=0.62, 

p=0.44).  

Cognitive workload 

RQ1 asked whether cognitive workload would vary as a function of the presence or 

absence of implicit sharing. A mixed model ANOVA showed no significant difference between 

interface conditions (F[1, 36.48]=2.49, p=0.12); participants in the implicit sharing condition 

rated workload slightly but not significantly lower (M=4.43, SE=0.18) than in the no implicit 

sharing condition (M=4.78, SE=0.18).  

Explicit sharing 

RQ2 asked whether the availability of implicit sharing might change the amount of 

explicit sharing via the chat box. A one-way ANOVA was used to compare word counts at the 

pair level, using condition as the fixed factor. In contrast with (Doroudi et al., 2016 [54]), who 

found a significant increase in the amount of explicit chat communication in a shared versus a 

non-shared condition, I found no significant differences in word count (F[1, 32]=2.11, p=0.16) 

between the implicit (M=782.59, SE=77.15) and no implicit sharing conditions (M=948.59, 

SE=84.40). 

Roles of implicit and explicit sharing 

Participants’ open-ended responses on the post-survey shed some light on just how 

implicit sharing was valuable and how it interacted with explicit sharing features. Several 

participants mentioned that implicitly shared Stickies helped them “make connections” and also 
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added value “by comparing information” or “cross-referencing information” visually between 

each other to promote awareness: 

“The Stickies enabled a connection between my partner and I, I could see each 

other’s train of thoughts and methods of organization. I used the connecting lines 

for the Stickies to show myself and my partner the connections that I was seeing.” 

(P27, Female). 

Much of the value came from the combination of implicit and explicit sharing. For 

example, implicit sharing could reduce the need for explicit communication: 

“The chat was easily the most helpful because it allowed me to communicate and 

tell each other specifics about the case. The Stickies were very useful also because 

they allowed me to make connections between the information I both had 

independent of talking with each other. [Stickies] allowed me to work more 

efficiently than wasting both of my time.” (P8, Male). 

On the other hand, implicit sharing could also prompt explicit chat and sharing, when it 

revealed needs and gaps: 

“I used the Stickies as jumping off points for conversations with my partner I 

would see her Sticky and then ask her to fill in some details that she may have 

skipped over since she had access to certain documents that I did not.” (P15, 

Female). 
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Finally, Stickies were intentionally designed to be free-form and open-ended, and 

participants did use them to separate aspects of the problem: 

“I simply piled them together and placed them in strategic positions. I used two 

stickies sometimes for the same case. Each sticky would have another side of the 

case like emotional and the other would be factual.” (P61, Female) 

“I took notes from the documents and highlighting the important parts created the 

stickies in the analysis space. I added my notes and thought as stickies in the 

analysis panes when I made connections between cases.” (P19, Female) 

In addition to the quantitative results, these comments show what value participants 

found in implicit sharing, how it was used independently and in tandem with explicit forms of 

communication, and how it can be further improved. They demonstrate the power of implicit 

sharing to improve collaborative analysis without requiring partners to explicitly push or pull 

information by triggering understanding and insights on both sides, improving efficiency of 

conversation, and initiating explicit discussions. 

Discussion 

In this chapter, I developed a collaborative version of SAVANT and used it to test the 

value of implicit sharing of information among analysts. The findings show mixed results about 

the value of implicit sharing in terms of task performance (H1). Participants were better able to 

identify relevant clues in the data when implicit sharing was available, but were not better able to 

name the killer. The hidden profile nature of this dataset has been shown to make this task quite 

difficult (Balakrishnan et al., 2008), however, so it is promising that implicit sharing aided with 
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intermediate sensemaking processes.  

Both participants’ perceptions (H2a) and actual usage logs (H2b) of the Stickies and 

Analysis Space features of SAVANT suggest that these features were more valuable when 

implicitly shared, but that they did not increase cognitive workload (RQ1) or change the amount 

of explicit conversation about the case (RQ2). However, participants’ appreciation of implicitly 

shared features in SAVANT did not carry over to improved perceptions of the team experience 

(H3), perhaps because factors such as task difficulty and distributed interaction harmed team 

dynamics as strongly as the tool helped them. 

Based on these findings, I suggest a number of design implications that can further 

improve collaborative analysis performance and process. One important observation is that not 

all Stickies were created equal. my intent was that they would represent “insights” (as opposed to 

“facts”), but people appropriated the Stickies for a variety of purposes: tracking “emotional” 

versus “factual” sides of the case (P61); “highlighting important parts” of a case versus “making 

connections” (P19); “trains of thought” versus “methods of organization” (P27). Providing ways 

to distinguish between different kinds of analyst note (e.g., through color, font, size, shape) that 

help analysts bend the notes to their ways of thinking might encourage the sharing of different 

kinds of information that helps establish common ground (McCarthy et al., 1991). NLP 

techniques that distinguish document-based facts vs. inferential comments (Stoyanov et al., 

2005; Wiebe et al., 2005) could be used to suggest categorizations, both making this feature 

smoother to use and encouraging analysts to be more aware of when they are making inferences. 
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Limitations and future directions 

Additional research is required to determine the best way to implement implicit sharing, 

and to assess how the value of implicit sharing may change over longer time periods, with larger 

datasets, varied data types, teams, and analysis tasks on factors like cognitive-load etc.   For 

example, implicit sharing may not scale to larger tasks if the amount of information to process 

starts to outweigh the advantages of awareness. Convertino et al.’s explicit moving of 

information from private to public workspaces (2011), Hayne et al.’s idea of parallel personal-

but-visible-to-all workspaces (2011), and my choice of implicit sharing of all analytical activity 

are three points in what I see as a large design space for knowledge sharing.  

Summary 

The contribution of this chapter is two-fold a) showing how intermediate analytic 

artifacts like insights on a Post-It note when shared may offer advantages for task performance 

and collaborative team experience b) implicit sharing offers a complementary channel to explicit 

information sharing. In Chapter 5 I discuss the evolution of collaborative SAVANT into 

REFLECTIVA. REFLECTIVA builds upon SAVANT’s finding that implicit information 

sharing is important and offers implicit sharing as default. REFLECTIVA also continues to 

leverage intermediate data analytic artifacts (like Post It Notes in SAVANT) and expands upon 

this notion by driving real-time visualizations based on such artifacts.  
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CHAPTER 5 

REFLECTIVA: DESIGNING FOR SENSEMAKING TRANSLUCENCE 

In the case of Boston Marathon Bombing introduced in Chapter 1, redditors implicated 

the wrong person and many other redittors confirmed this suspicion without fully verifying it, an 

effect known as cognitive tunneling: once people start down a path, they continue to seek 

evidence confirming that they are on the right track and ignore evidence that might suggest 

otherwise. Similarly, in March 2008, Demetrius Smith was charged for the murder of Robert 

Long. Even though Long was working with police as an informant and potential witness against 

his boss, Morales, police ignored Morales as a potential suspect even though he had both motive 

and opportunity.  After serving a five-year prison sentence, Smith was exonerated and released 

due to evidence that some of the original testimony was racially biased.  

Cognitive tunneling hindered the process of sensemaking in the Long murder case in two 

ways: First, the investigators should not only have collected evidence that confirmed their 

(wrong) hypothesis that Smith committed the crime, but also collected evidence that 

disconfirmed their hypothesis. Second, self-awareness of personal biases is hard. It is even 

harder in the process of complex sensemaking like crime analysis. In retrospect, awareness of 

biases might have afforded investigators the cognizance that their attention was prematurely 

focused on a single suspect instead of appropriately distributed across other suspects, including 

Morales. Thus, an absence of due process and transparency into one's own mental process 

enabled biased sensemaking. 

Police Chief periodical reports that on average, 16 murders occur every day that might 

never be solved and their perpetrators never arrested because of reasons like confirmation biases 
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and groupthink (Police Chief Magazine, 2009). These issues may be exacerbated in cases where 

crime investigators in multiple agencies need to work together due to reduced information 

sharing and awareness across geographically distributed teams and investigating partners (Egger, 

20020; Mentis et al., 2009). While the timely exchange of information is essential to successfully 

solving crimes, at the same time, information received from one analyst can unduly influence 

another’s reasoning, resulting in cognitive tunneling.  

This chapter builds upon the previous chapter by holding implicit sharing as the default 

while expanding upon the notion of using intermediate data analytic artifacts. In the current 

chapter, I focus on using such artifacts to create the notion of sensemaking translucence, or the 

process of making analysts more aware of their sensemaking processes. Sensemaking involves 

foraging for information pieces that could connect with each other, resulting in multiple initial 

hypotheses. These hypotheses are then closely synthesized to find evidence that confirms or 

disconfirms them, until an ultimate hypothesis remains (Pirolli & Card, 2005). Successful crime 

investigators pursue multiple suspects until they have sufficient information to rule out all but the 

culprit (Heuer, 1999). While the sensemaking process frequently goes wrong when information 

is not shared in a timely fashion, it can also go wrong when an analyst prematurely decides on a 

suspect without ruling out the others as in the case of Demetrius Smith.  

To balance the need for information exchange with the goal of reducing cognitive biases, 

I developed REFLECTIVA, a sensemaking translucence interface that consists of two integrated 

parts: a hypothesis window that is intended to motivate explicit interchange of ideas about 

suspects’ means, motives and alibis and a suspect visualization that provides automatic feedback 

on which suspects have been discussed based on the hypothesis window, a group chat window, 
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and a digital sticky note feature.  The design of the suspect visualization is intended to provide 

awareness not only of those suspects that have been discussed but also of the idea that there 

might be other suspects out there that have yet to be discussed. I then examined the effects of the 

sensemaking translucence interface in a laboratory study in which pairs of remote participants 

role-played detectives collaborating to solve a serial killer crime (Goyal et al., 2016).   

The hypothesis window is similar to Alternative Competing hypothesis (ACH) 

(Convertino et al., 2008), in which users explicitly share their hypotheses and evidence to 

maintain awareness of one another’s insights and to develop a joint mental model of the case. 

The hypothesis window is  

Figure 10. The REFLECTIVA Document Space showing (clockwise, from top-left) the directory of crime 
case documents, a tabbed reader pane for reading case documents, a visual graph of connections based on 
common entities in the dataset, a map to identify locations of crimes/events, and a timeline to track events 
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Figure 11. The REFLECTIVA Analysis Space showing (clockwise, from top-left) the chat for explicit 
sharing, connected stickies for Implicit Sharing, hypothesis window in the middle with columns to add 

new Hypotheses, confirming evidence, and disconfirming evidence for explicit Hypothesis Tracking, and 
Suspect Visualization at the bottom with 4 Avatars: Dennis Rathbone. Marilyn Stokes, Steve Gramming, 
and Lousie for Suspect Tracking. Note: Chat, Visualization, Sticky, and Hypothesis Window have been 

magnified to improve readability. 

 

also designed to help reduce confirmation bias by including fields for reporting evidence that 

disconfirms each hypothesis (Goyal et al., 2016). 

The suspect visualization depicts the joint attention paid to each suspect thus far in the 

analysis and encourages collaborators to distribute their attention across multiple suspects 

instead of focusing prematurely on a single suspect who might not be the actual culprit. The 

suspect visualization changes automatically as analysts mention suspects in their hypotheses, 

notes or chat conversations. 
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Study Hypotheses 

The hypothesis window and suspect visualization are designed to be used in tandem, such 

that each new sharing of a hypothesis is associated with steps to assess the quality of that 

hypothesis (via fields in the hypothesis window) and steps to promote consideration of other 

possible hypotheses (via the suspect visualization). I thus tested a sensemaking translucence 

interface that contained these integrated features against an earlier version of the same tool that 

did not (Goyal et al., 2015). For the reasons outlined above, I predicted that the sensemaking 

translucence interface would improve pairs’ crime-solving performance: 

H1. Participants using a sensemaking translucence interface will perform better 

on a collaborative analysis task than participants using a standard interface. 

I also reasoned that by enabling analysts with a better understanding of their partners’ 

thoughts and activities, the sensemaking translucence interface would help analysts make 

appropriate decisions about their own activity (Froehlich et al., 2004) and that analysts would 

perceive the sensemaking translucence interface to be of more value for their work than the 

standard interface.  

H2a. Participants using a sensemaking translucence interface will rate the 

usefulness of the tool higher than participants using a standard interface. 

H2b. Participants using a sensemaking translucence interface will report higher 

level of activity than participants using a standard interface.  



 

 

 

69 

A sensemaking translucence interface also has the potential to improve the experience of 

working together. Awareness of other analysts’ activities has been shown to help novice analysts 

get up to speed (Bier et al., 2010). In medical settings, implicitly shared awareness information 

can help establish common ground between clinical staff (Bardram et al., 2006; Paul et al., 2010) 

and lead to more positive perceptions of the process (Convertino et al., 2008). Since making 

sensemaking more transparent reduces uncertainty about the status of the task and reduces the 

need for verbal updates of status via the chat interface, I predicted: 

H3. Participants using a sensemaking translucence interface will rate their 

collaborative experience higher than participants using a standard interface. 

However, sensemaking translucence may also come with costs. Analysts may feel 

compelled to share preliminary thoughts, and read their partners’ emergent hypotheses. This may 

increase the cognitive demand of the crimesolving task. On the other hand, by reducing the need 

for explicit verbal sharing of information, my interface may reduce the time and effort required 

for the task (Fisher et al., 20120; Weick et al., 1993). There is also a potential for the suspect 

visualization to be distracting. Since the direction of impact is unclear, I posed a research 

question: 

RQ1. How will the sensemaking translucence interface affect participants’ 

cognitive workload? 

REFLECTIVA 

REFLECTIVA, the tool used for this experiment is based on SAVANT from previous 

chapters. REFLECTIVA has two main components: a Document Space and an Analysis Space.  
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The Document Space (Figure 10) was identical for both the standard interface and the 

sensemaking translucence interface. Here, investigators could view their case documents, and 

highlight/annotate text in these documents. They could also view and manipulate a network 

diagram that showed connections between cases as calculated by TF/IDF on named entities, 

access and annotate Google Maps to mark crime-locations, and annotate a timeline to identify 

temporal patterns.  The Document Space appeared on one of the analysts’ two monitors. 

A second monitor was used to present the Analysis Space (Figure 11).  Two features of 

the Analysis Space were common to participants in both the Standard Interface and the 

sensemaking translucence interface: digital stickies and a chat box. Annotations created in the 

Document Space appeared automatically as digital stickies in the Analysis Space, where they 

could be moved, edited, connected using arrows, or piled atop one another to show relevance. 

This iterative reorganization of stickies supports analysts’ processes of foraging and 

sensemaking (Chin Jr. et al., 2009; Convertino et al., 2009; Hayne et al., 2011; Pioch et al., 

2006). The Analysis Space also included a standard chat box (Figure 11b, lower left). 

The Analysis Space for participants in the sensemaking translucence interface included 

two additional features: a Hypothesis Window, and a Suspect Visualization. These two features 

are connected to each other, and enable sensemaking translucence in two different ways.  

The Hypothesis Window (Figure 11, center) allows users to enter their emergent 

hypotheses manually, reflecting on their current cognitive state of sensemaking. This space also 

reminds users to add evidence that confirms and disconfirms these hypotheses, such that users 

can explicitly mark the status of each hypothesis as accepted, rejected, or needing more 

information. Entries (hypothesis, confirming/disconfirming evidence, status, and status related 
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Figure 12. Sample sensemaking trajectory. 

1. Sensemaking-Translucence reminds users to consider suspects by showing empty Avatars at the start  

2. Avatars are automatically populated by names detected from implicitly shared stickies.  

3, 4 & 5. Avatars show distribution of name-reference by getting darker for names mentioned in stickies, 
chat and hypothesis window. The last mentioned suspect in hypothesis window is marked red  

6. With use, visualization depicts distribution of attention at suspect level, based on explicit mentions. 
Note: Chat, Visualization, Sticky, and Hypothesis Window have been magnified to improve readability in 

2, 3, 4 and 5. 1 and 6 represent non-magnified versions of the Sensemaking Translucence interface. 

 

comments) were color coded to reflect each team member’s contribution. 

The Suspect Visualization was generated by the REFLECTIVA system in real time using 

Natural Language Processing of named entities.  The system automatically identified named 

entities (names of persons only) in stickies, the chat conversation, and the hypothesis window. 

Each newly identified name was assigned an avatar. The visualization begins with four unnamed 
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avatars, suggesting that users should pursue names of potential suspects while the potential 

suspect-space is empty. As users share more suspect names in the Analysis Space, newly created 

named Avatars flanked by unnamed Avatars further remind users that there may be more 

suspects to discover. Furthermore, each time a name is mentioned in the Analysis Space, the 

associated Avatar darkens. This reflects the lack of non-equitable distribution of information 

sharing in the Analysis Space and supports suspect tracking.  

 Figure 12 shows one possible sensemaking trajectory where the two sensemaking 

translucence features facilitated the exchange of insights while simultaneously discouraging 

cognitive tunneling. 

Method 

Pairs collaborated to identify a pattern in a crime dataset similar to that used in the 

SAVANT studies reported in Chapters 3 and 4. They used a simulated geographically distributed 

environment. Pairs were randomly assigned to one of two interface conditions: standard interface 

or sensemaking translucence interface. The Standard Interface included a document space and 

an analysis space where users could share information using stickies and chat.  The Sensemaking 

Translucence Interface allowed users to share information like the standard interface and further 

enabled partners to track the progress of their analysis by explicit hypothesis tracking and 

suspect tracking visualization. I measured task performance, perceptions of the interface, quality 

of the collaborative experience and cognitive load.  

In summary, there were two different versions of the REFLECTIVA interface.  In the 

standard interface condition, participants had the Document Space and an Analysis Space with 

stickies and chat box.  In the sensemaking translucence interface condition, participants had the 
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Document Space and an Analysis Space that included the Hypothesis Window and Suspect 

Visualization in addition to stickies and a chat box. 

Participants 

Fifty participants participated in the experiment described as a “Solve Crimes Together 

Study” as 25 pairs. Of the 25 pairs, data for five pairs was discarded due to technical failures in 

Internet connectivity (4 pairs) and inconsistent instructions (1 pair). Finally, forty participants 

participated in the experiment (16 male, 24 female; 77.5% U.S. born; age range 18-28, median 

age approximately 21; 82.5% spoke English as first language). All students were undergraduate 

or graduate students at a large U.S. university. Participants were paid $15 for their participation 

in the 1.5-hour experiment. Preliminary screening showed no significant demographic 

differences between participants in the two interface conditions.  

Materials 

Serial Killer Task. The task was based on the crime-solving paradigm presented in 

Chapter 3 and Appendix A. In this task, each participant is provided with a set of documents 

pertaining to 3 cold murder cases, half of the documents pertaining to a current murder case, bus 

route information, and maps of the areas of the crimes. In total, there were seven murders, with 

about 40 potential suspects, hidden in about 20 documents divided equally between the two 

participants.  

The task required participants to share their information in order to connect 10 clues 

spread across the cold cases and two extra clues in the unrelated current case. This combination 

of clues indicated that a serial killer was responsible for four of the cold cases and revealed the 

identity of that serial killer.  In previous studies this task has proven to be quite difficult for 
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participants such that the majority fail to identify the Serial Killer (e.g., Balakrishnan et al., 2008; 

Balakrishnan et al., 2010; Goyal et al., 2015; Goyal et al., 2013).  

Post-task report form. After completing the task, participants were given individual 

paper report forms to complete.  They were asked to provide the name of the serial killer, 

associated victims, and all clues that could incriminate the serial killer. 

Post-task survey.  An online post-task survey asked participants about their user 

experience and interface utility, collaboration experience, cognitive load (TLX), analytic ability, 

and demographic information. As described in more detail in the Measures section below, most 

questions were answered on 5 point Likert Scales. 

Equipment 

Two workstations (Intel Core i7 processor, 16 GB RAM) were connected to the Internet 

and ran as a web application, deployed on the university server. Each was connected to two 25” 

monitors, the left showing the Document Space, and the right showing the Analysis Space. To 

simulate remote collaboration, the workstations were in separate cubicles to prevent eye contact 

and participants wore noise-cancelling headphones that prevented them from hearing their 

partner’s speech or typing. 

Procedure 

Participants were seated apart at workstations such that they could not see each other or 

their partner’s workstations. The experimenter explained that they would be role-playing 

detectives on a homicide team. After the participants signed the written consent form, they 

received training about the importance of motive, opportunity, and lack of alibi in solving crime 

cases. For experimenter’s internal record keeping, participants with sensemaking translucent 
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interface condition were assigned numbering in hundreds (100 onwards) and with control 

conditions were assigned numbering in tens (1 onwards). Next, they performed a 10-minute 

practice task in which they identified motive, opportunity and (lack of) alibi in a laptop theft 

crime case. 

Next, participants received the instructions for collaborating on the crime task: to work 

together as a team, share information, and find the name of the serial killer. They were also given 

a demo of the interface for their condition.  Pairs were given 50 minutes to read through their 

documents, identify and share clues, brainstorm hypotheses, and identify the name of the serial 

killer.  Upon completion of the task, they individually filled out the post-task report form and 

then the post-task survey.  

Measures 

I had two main sources of data: participants’ final reports, and post-task survey results. 

Task performance. Two measures for task performance were used, both based on the 

post task report form.  Serial killer identification was a binary variable: 1 when correctly 

identified and 0 otherwise.  Since this binary measure does not tell me how much progress a 

team had made in solving the case when the serial killer was not identified, I also used a clue 

recall score measured by the number of correct clues listed on the report form. 

Usefulness of Analysis Space. Participants responded to multiple questions in the post-

task survey about the usefulness of the Analysis Space for spreading their attention across 

multiple cases, generating hypotheses, and collaborating on the task. These measures are based 

on those from other similar studies (Balakrishnan et al., 2008; Goyal et al., 2015; Wright et al., 

2006). 
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Focused attention activity: Five 5-point questions asked participants about the degree to 

which they interacted with the Analysis Space to pay attention to potential suspects, consider 

other alternative suspects, rule out suspects, track progress of suspects, and notice persons they 

did not pay enough attention to. For example, “I paid attention to number of potential suspects I 

considered in the Analysis Space”. These five questions formed a reliable scale (Chronbach’s 

α=.84) and were averaged to create a measure of Focused Attention.  

Hypothesis activity: Three 5-point questions asked participants about the degree to which 

the participants interacted with the Analysis Space to create hypotheses, confirm hypotheses and 

disconfirm hypotheses. These three questions formed a reliable scale (Chronbach’s α=.71) and 

were averaged to create a measure of hypothesis Activity. 

Analysis Space utility: Five 5-point questions asked participants about the degree to 

which the Analysis Space helped them discuss cases with their partner, understand what their 

partner was thinking, track progress, and made them feel cognitively, and emotionally closer to 

their partner. These five questions formed a reliable scale (Chronbach’s α=.88) and were 

averaged to create a measure of Analysis Space Utility. 

Team experience. The post-task survey contained ten survey questions about the quality 

of the collaboration (e.g., “It was easy to discuss the cases with my partner,” “My partner and I 

agreed about how to solve the case”). These ten questions formed a reliable scale (Cronbach’s 

α=.84) and were averaged to create a team experience score, to answer H3. This measure is 

similar to (Chuah et al., 2003; Goyal et al., 2015) who used a post-task questionnaire to assess 

quality of communication within the group. 
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Figure 13. Serial killer identification and number of correct clues identified by interface condition. 

 

Cognitive load. The post-task survey contained five questions based on the NASA TLX 

(Hart et al., 1988) that asked participants to rate how mentally demanding, temporally 

demanding, effortful, and frustrating the task was, as well as their subjective performance. After 

inverting the performance question, these five responses formed a reliable scale (Cronbach’s 

α=.72). Participants’ responses were averaged to create one measure of cognitive load. 

Results 

I present the findings in four sections. First, I discuss the effects of sharing sensemaking 

translucence on my two task performance measures. I then consider how it affected subjective 

ratings of SAVANT features, subjective ratings of how participants interacted with SAVANT, 

perceptions of team experience, and cognitive load.   

Task performance 

H1 proposed that pairs would perform better when sensemaking translucence was 

available than when it was not available. To test this hypothesis, I conducted mixed model 
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ANOVAs, using clue recall and serial killer identification as my dependent measures. In these 

models, participant nested within pair was a random factor and interface condition (standard vs. 

sensemaking translucence) was a fixed factor. 

Clue recall. There was a borderline significant effect of sensemaking translucence 

interface on the number of clues participants recalled in the written report (F[1, 38]=3.80, p=.06). 

As shown in a, participants using the sensemaking translucence interface recalled more clues 

(M=4.3, SE=.47) than those using the standard interface (M=2.9, SE=.54).  

 Serial Killer identification. b shows participants’ performance at identifying the name of 

the serial killer. Participants were significantly more likely to identify the name of the serial 

killer correctly when using the sensemaking translucence interface (M=.75, SE=.09) than when 

using the standard interface (M=.30, SE=.10; F[1, 38]=9.67, p=.004).  

Perception of usefulness of SAVANT features. 

 

Figure 14. Perception of interface usefulness by interface condition 
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According to H2a, sensemaking translucence would be perceived as more valuable. I 

analyzed participants’ self-reported ratings of the user activity with SAVANT’s features using 

mixed model ANOVAs with participants nested within pair as a random factor and interface 

condition (sensemaking translucence vs. standard) as a fixed factor. 

Both focused attention activity and hypothesis activity (left two graphs in Figure 14) 

show a negative trend and did not support H2b. Participants in the sensemaking translucence 

condition reported using the Analysis Space to pay attention to potential suspects less (M=2.87, 

SE=.16) than did those without sensemaking translucence (M=3.33, SE=.23; F[1, 38]=2.56, 

p=.12). Participants in the sensemaking translucence condition also reported creating, 

confirming, and disconfirming hypothesis lesser (M=2.10, SE=.16) than those with no task-

monitoring (M=2.51, SE=.31; F[1, 38]=1.39, p=.24). These results are opposite to H2b. 

Further, the participants rated Analysis Space to be of lower utility when sensemaking 

translucence was available and did not support H2a (right graph in ). Participants in the non-

sensemaking translucence condition reported Analysis Space to be significantly better at helping 

them discuss cases and feel closer to their partner (M=3.68, SE=.15) than when sensemaking 

translucence was available (M=2.95, SE=.21; F[1, 38]=7.63, p =0.009).   

Team experience 

H3 predicted that participants would rate the quality of their collaborations with their 

partners higher with sensemaking translucence compared to standard interface. To test this 

hypothesis, participants’ team experience scores were analyzed in a mixed model ANOVA in 

which participant nested within pair was a random factor and condition (sensemaking 
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            Figure 15. Self-reported workload and team experience by interface condition. 

 

translucence vs. standard) was a fixed factor. H3 was not supported (F[1, 38]=0.03, p=.84, as 

shown in Figure 15.) 

Cognitive workload 

RQ1 asked whether cognitive workload would vary as a function of the presence or 

absence of sensemaking translucence. A mixed model ANOVA showed no significant difference 

between interface conditions (F[1, 38]=1.55, p=.21); participants with sensemaking translucence 

did not rate cognitive workload significantly lower (M=4.45, SE=0.21) than in the standard 

interface condition (M=4.84, SE=0.22). (See Figure 15.) 

Roles of implicit and explicit sensemaking translucence  

Participants’ open-ended responses on the post-survey provided details about how the 

different features in Analysis Space were appropriated to collect clues, and solve the cases. 
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Hypothesis Window. First, several participants mentioned the interplay between the 

implicitly shared stickies and the Hypothesis Window. They referred to the bidirectional 

knowledge transfer between these two channels and showed how the two complemented each 

other: 

“After deciding on an MO [Modus Operandus] for the serial killer in the 

hypothesis space, I moved that out of the window and onto a stickie.” – P111, 

female 

“We used the analysis space to connect sticky notes and then form hypotheses 

based on the notes”…“We more sketched out ideas in the hypothesis space I 

think, after I had agreed on them” – P122, female 

“The hypothesis window was very useful for synthesizing all the evidence I found 

in an easy-to-read window so that I could keep track of my findings. The stickies 

provided all the supporting evidence, but the hypothesis window summarized it 

for us.” – P106, male 

Several participants also mentioned the partial use of the Hypothesis Window. Most 

participants created hypotheses towards the second-half of investigation, unless they were 

confident earlier on. Further, most participants also reported creating or supporting previously 

created hypothesis and shied away from adding evidences that disconfirmed hypothesis that had 

been decided upon previously with their partner: 
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“I created hypothesis for my cases with common MO.  I confirmed the hypothesis 

made by me and the other person on my Current case.  Didn't disconfirm the 

other person's hypothesis due to lack of detailed information about his/her cold 

cases.” – P103, female 

“Used the hypothesis window by including supporting evidence only. I didn't 

write any of the hypotheses only my partner did. Didn't include any evidence to 

reject the hypothesis…  “ – P128, male 

As is evident, much of the value of Hypothesis Window came from hypothesis reporting, 

evidence gathering, hypothesis confirmation, and combination with stickies in analysis space. 

Other participants shared their strategies of how they optimized use of the analysis space, and 

pointed to two distinct advantages of Hypothesis Window. First, it enables better organization of 

ideas than the free-form stickies. Second, it was used not to report the emergent hypothesis, but 

to report conclusions instead.   

“I found that I was able to comprehend all the evidence best by looking at all of 

my stickies, setting up my hypotheses, and talking about what I thought. However, 

I think in order for stickies to be useful they have to be organized nicely. 

Sometimes when my partner's stickies were disorganized I had a hard time 

following her cases.” – P106, male 

“Being able to chat was very important for talking about current ideas.  Stickies 

helped to identify important things, but it was easy to overload on stickies, 

especially with 6 cases in one space.  The hypothesis window was good for when I 
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already felt I had conclusions, but did not necessarily come in handy during the 

thought process.  The visualization was good for seeing where I needed to do 

more work but not really good for focusing on people.” – P111, female 

On the contrary, pairs without the Hypothesis Window also used both implicit and 

explicit channels, in agreement with previous research (Goyal et al., 2015): 

“By using notes about each case and comparing them to one another.” – P14, 

female 

“I wrote any details that could possibly mean any type of link (i.e.: someone 

worked with money, someone had a secret lover, someone worked in the same 

field as another victim).”  P18, female 

Suspect Visualization. Unlike the Hypothesis Window, participants reported using the 

Suspect Visualization for not just confirming, but also disconfirming their hypotheses. Several 

participants reported using the visualization to ensure that they did not focus attention on any 

particular case/suspect:   

“Paid attention to the avatars mainly to make sure that I didn't concentrate on 

one case only” – P103, female 

“I only paid attention to the avatars if I were talking too much about a certain 

person. I didn't think until the end to consider it for potential suspects.” – P115, 

male 
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Further, the visualization helped indicate lack of sufficient information about potential 

suspects, so that they could not be discounted. So, instead of removing potential suspects, 

visualization helped users to rule in potential suspects: 

“I didn't rule out suspects due to the visualization but I did use the visualization 

to see if I needed more information on a suspect.” – P111, female 

Avatars in the visualization also served to imply whether the pairs shared common 

ground about the potential correct answer by showing how much the collaborators were referring 

to any particular suspect together: 

“I used the avatars to let me know that there was a certainty that my partner and 

I were on the same page about suspecting someone for the crime” – P109, male 

For some others, the visualization either served as tool for confirming their “hunch” or 

had no effect on their sensemaking process: 

“I hardly glanced at it. There were too many people for me to start accounting for 

them all. I only started looking into a suspect when I began noticing where they fit 

into the "story".” – P106, male 

“Mentioning the name didn't really change my investigation of them or others 

didn't affect my work didn't rule anyone out” – P104, female 

A few participants reported visualization blindness because visualizing suspects from 

previously reviewed cases could be irrelevant to newer threads of investigation.     



 

 

 

85 

“There were too many avatars for me to keep track of everyone, and I were on a 

time crunch. I don't think it is worth investigating someone more just because I 

haven't talked about them much. If they have a solid alibi, or are involved in a 

case that has nothing in common with my case, they are not as important as the 

person who is mentioned across several files.” – P106, male 

“I didn't really use the Avatars and visualization at the bottom since I felt that it 

didn't really help and that it was there just as a distraction” – P110, female 

On the other hand, other participants found value in the visualization by optimizing 

strategies rather than completely ignoring it. Some participants did not view the Avatars unless 

they visualized sensemaking translucence on the “local” current thread of investigation instead of 

“global” sensemaking translucence:  

“I didn't use the avatars if they did not have to do with the case I was working on 

at the time. When I made new notes about small details, it added every single 

name I mentioned although it didn't have to do with another case I was working 

on.” – P109, male 

Others found value in the visualization as sources for new investigation-threads and 

hypothesis based on the names, or how relevant these names seemed to be potential suspects: 

“The avatars in the beginning were adding up very quickly. Not until two-thirds 

of the way into the time did certain avatars seem like true suspects to consider. 

And only then did my partner and I start developing hypotheses.” – P128, male 
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In addition to the quantitative results, these comments show how the Hypothesis Window 

was viewed as less useful than I expected. Even though participants liked its structured 

organization, they used it to primarily report and confirm conclusions instead of reporting 

emerging hypothesis and then working to confirm and disconfirm them.  The Suspect 

Visualization was viewed as useful to identify potential suspects and validate common-ground. 

While both sensemaking translucence features connect with communication channels in the 

Analysis Space, the visualization improved collaborative analysis by creating common ground 

and initiating new threads of investigation.  

Discussion 

I developed REFLECTIVA to examine the value of sensemaking translucence in 

collaborative sensemaking and then evaluated it in a distributed synchronous collaborative 

crime-solving task. Consistent with H1, I found that pairs of analysts using an interface that 

provided sensemaking translucence identified significantly more clues relevant to solving the 

case and identified the culprit a significantly greater proportion of the time than pairs using the 

standard interface with no sensemaking translucence features. However, inconsistent with my 

other hypotheses, pairs using the sensemaking translucence interface rated it as less helpful than 

pairs using the standard interface in terms of providing support for analysis, aiding hypothesis 

generation, and helping them pay attention to multiple suspects. 

There could be multiple reasons for this mismatch between the objective value of the tool 

for task performance and users’ subjective perceptions of its value. First, participants may have 

been uncomfortable with the amount of explicit sharing of information and insights required in 

the sensemaking translucence interface even though this greater explicitness helped them solve 
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the case. The sensemaking translucence interface required explicit actions by the users in terms 

of when and what to write into the Hypothesis Window. This tension between explicit sharing 

for sensemaking translucence vs. ease of use could explain lower subjective ratings of the 

sensemaking translucence interface. Previous work shows that implicit sharing leads to 

significantly better user experience compared to when explicit actions are required by the 

collaborators (Goyal et al., 2015).  

Second, participants had to spread their attention across far more features and 

information made available by these features in sensemaking translucence over the standard 

feature, even though this information helped them identify potential suspects. As P110 and P106 

point out, participants using the sensemaking translucence interface had to distribute their 

attention between stickies, chat, an organized hypothesis window, and the suspect visualization 

whereas participants using the standard interface had only to attend to the stickies and chat. 

While the former did not lead to a significantly higher level of self-reported cognitive load, it 

may be that at some level participants reacted negatively to having to manage so many different 

features at once, resulting in lower reported perceived utility. 

Third, despite the obvious gains in task performance, tools like my hypothesis window 

that enforce rigid structure are often perceived to be of low utility in collaborative sensemaking 

tasks.  For example, Convertino et al. (2008) found that almost half of their participants wanted 

more control of how information was displayed in a matrix similar to SAVANT’s Hypothesis 

Window. As P122 and P106 point out, even though the structured hypothesis window provided a 

strict organization to conclusions, the unstructured nature of the stickies allowed them to sketch 

out ideas prior to inserting their conclusions in the hypothesis window. However, previous 
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research indicates that despite the lack of perceived utility, rigid structure improves task 

performance in decision-making groups (Mentis et al., 2009). 

In addition to the incongruence between my results for task performance and perceived 

usability, I also found that participants appropriated the sensemaking features differently because 

the two features were designed to support different parts of the foraging and the sensemaking 

process. While the Hypothesis Window was designed to encourage sensemaking through explicit 

confirmation/disconfirmation of partners’ insights, the Suspect Visualization was designed to 

discourage focusing attention on any particular suspect early in the sensemaking process.  

The Hypothesis Window was appropriated as a summarizing tool. One of the reasons 

could be that the participants may have to balance between the immediacy of 

hypothesis/evidence reporting with the perceived benefit of leaving their current sensemaking 

loop to do so. Some participants (P103 and P128) mentioned that they filled in the Hypothesis 

Window only towards the end of the process, rather than in an ongoing fashion as intended. This 

suggests a need to pay greater attention to the temporal nature of people’s use of sensemaking 

translucence features. This connects well with Reddy’s discussion of rhythms of work in 

information seeking (Reddy et al., 2002), which suggests that individuals’ actions are dependent 

not just on immediacy but also on when it would be most beneficial to perform them in their 

work.  

The Suspect Visualization was appropriated for foraging to rule in potential suspects. 

One of the reasons could be that the visualization affords an overall view of sensemaking across 

the 6 cases, instead of specifically supporting sensemaking of a single case. Users pointed to 

sensemaking as an act of pursuing multiple threads of investigation: global and local. As 
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suggested by some participants (P106 and P109), visualizing the “average” global attention-

spread prevents depicting the attention-spread at a local case level, possibly leading them to view 

the Suspect Visualization as “distracting” when a pattern of a serial nature is not yet evident.   

Limitations and Future Directions 

This study also focused on two possible designs in a large design space for collaborative 

analysis tools, and it studied the impact of using the two features together instead of assessing 

the cost vs. benefit of each feature individually. More research will be needed to determine the 

best possible way to implement these features in collaborative sensemaking tools. Further, while 

this study focused on a study between a pair of collaborators, future research is needed to 

understand the impact of team size, and scaling across multiple collaborators (Goyal et al., 2013) 

on designing sensemaking translucence features. 

One particular challenge might be the scalability of sensemaking translucence. With 

increasing time and complexity of datasets, or with increasing team size, explicitly sharing at a 

suspect and hypothesis level could lead to information overload. At the same time, however, it 

might provide data provenance that is often lost in sensemaking. Further, domains like crime-

solving/medical-sensemaking etc. are constrained in the extent to which certain types of 

information can be shared due to organizational privacy laws. I see this as an open design space, 

where designers could consider single or multiple means of visualizing the sensemaking 

translucence.  

While this work demonstrates the value of sensemaking translucence, much more work is 

needed to determine the best way(s) to implement it. For example, the tension between non-

premature hypothesis sharing and timely information sharing should be reduced. I see this as a 
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spectrum where designers could design for fully automated hypothesis generation or require 

limited input from users to verify generated hypothesis, or any solution in between. Designers 

could push natural language processing further to identify not just the named-entities (suspects) 

but the explicitly shared hypothesis as well. Identified hypotheses may be implicitly shared using 

the hypotheses window, reducing the redundancy and improving sensemaking translucence. 

Improved sensemaking translucence without explicit sharing would reduce workload and will 

make user attention available for the process of sensemaking itself. 

Providing interfaces that free up user attention could also help improve subjective user 

experience while maintaining high task performance. Connecting sensemaking translucence 

more closely to the artifacts of sensemaking itself could also reduce this tension between user-

experience and task performance. The Hypothesis Window, and Suspect Visualization could be 

better integrated with the stickies to further accrue the advantages of implicit sharing. For 

example, evidence that disconfirms any hypothesis could be highlighted for closer inspection. 

Eventually, collaborators could leverage each other’s insights as recommended by the system 

while they manage their limited attention under strict time pressure. 

Future designs would also benefit from greater attention to how sensemaking features 

might support the different phases of sensemaking work itself.  One design goal could be to 

remind users to interact with sensemaking translucence features more during the process of 

sensemaking. Future tools could match natural language processing on the chat transcripts with 

machine learning on user activity for behavior recognition. Recognizing activities correlated with 

task success vs. failure could help customize the tool usage, for instance by recommending to 

users that they need to pursue disconfirmation of existing hypothesis or that they should 
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distribute their attention across suspects. Detecting deviations from known successful behaviors 

and persuading investigators to reduce biases could potentially reduce the number of unsolved 

cases (Police Chief Magazine, 2009). 

Finally, more closely integrated sensemaking translucence features could help reduce 

workload. In my design, integration was unidirectional such that the Hypothesis Window drove 

the visualization but not vice versa. It is also possible for the visualization to trigger new 

hypotheses about potential criminals. Implicit hypotheses (including location, timeline, alibi etc.) 

could be generated based on notes gathered for each suspect. This might aid sensemaking 

translucence by offering an alternative bottom-up view.  

Summary 

To summarize, the contributions of this chapter were a) introducing the notion of 

sensemaking translucence as a metaphor to overcome cognitive tunneling, a challenge I have 

seen surface multiple times b) leveraging intermedia data analytic artifacts to provide feedback 

to the teams about their progress and process. While REFLECTIVA affords the collaborators to 

collaborate and minimize cognitive tunneling, collaborators must still manage the collaboration 

process itself. For example, the collaborators must still manage incoming requests for 

information and information about new findings and insights, while managing their own iterative 

sensemaking process. Collaborative sensemaking process, hence, requires not just 

REFLECTIVA’s anti-cognitive tunneling but also a way to manage and respond to such 

requests. In the next chapter, I will discuss the findings of the chapters 3-5. 
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CHAPTER 6 

GENERAL DISCUSSION 

The goal of this dissertation has been the creation and evaluation of novel designs for 

tools to support solo and collaborative sensemaking. The dissertation was organized into 

chapters that highlighted a novel tool design coupled with a study of its value for remotely 

located analysts. Each new tool aims to improve on the previous one by facilitating additional 

aspects of the analytic process.  

One key observation in my work is that not all the design features are equally valuable. 

While Visualization and Note-taking features are individually important, the presence of both 

simultaneously has an adverse effect on task performance. Similarly, implicit and explicit 

sharing are both important. However, one cannot be discounted for the other. Each feature 

affords different kinds of information sharing.   

A second key observation is that there is a tension between task performance and user-

experience when users are exposed to reflexive visualizations. Tool designers may have to 

decide which of these they want to improve in critical situations like crime-solving.  

A third key observation is that, despite the computational progress made by computer 

science, designing for sensemaking performed by analysts remains challenging because of the 

“human in the loop”. Sensemaking tools may be algorithmically advanced. However, unless our 

designs account for the usability, social and cognitive processes, no one may use them. In the 

rest of this chapter, I will highlight key results from the preceding chapters and then discuss how 

they contribute to the understanding of and resolution of this tension.  
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Summary of Results  

In Chapter 3, I discuss how we should move away from one design fits all approach and 

focus on designing modular tools that have features which should be tested for their utility, 

experience, and interaction with other features before exposing a fully feature laden complex tool 

to analysts who might feel overwhelmed and not use it. I designed the SAVANT prototype, 

which allows researchers or analysts to selectively turn features on and off depending on their 

needs.  In a laboratory study using this prototype, I discovered that different features impact 

analytic process differently, and their designs interact with each other – sometime even reducing 

the performance.  

In Chapter 4, created a collaborative version of SAVANT and tested whether implicit 

sharing can enrich explicit sharing when analysts have to share information while working 

collaboratively across distance. In a lab experiment, I tested implicit sharing vs. no-implicit 

sharing and discovered that despite the danger of higher information overload, the automated 

sharing of insights implicitly did indeed improve both the task performance and team experience. 

However, not all implicit sharing is the same. For example, sharing of insights is different that 

sharing raw facts etc. I also discovered that automatically shared information has the power to 

confirm initial hunches held by the users and thus cognitively tunnel users’ initial hypothesis.  

In Chapter 5, I introduce REFLECTIVA, a tool iteratively designed based on SAVANT 

that includes additional features to create sensemaking translucence – automatically sharing 

team’s focus of attention to highlight and expand the potential solution space and to disconfirm 

suggested hypotheses. Sensemaking translucence, I argued, could help reduce cognitive 

tunnelling by making analysts aware of their cognitive processes. In a lab experiment testing 
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REFLECTIVA against SAVANT, I found that while REFLECTIVA did improve task 

performance significantly over SAVANT, users still preferred SAVANT. It is possible 

REFLECTIVA pushed them to think at the team level and not at the individual level, or it 

reminded them to step out of their comfort zone and consider alternative solutions. This 

highlights a challenging decision for designers: design for performance or design for user 

experience. 

In the next section, I will briefly reflect upon my findings presented in the previous 

chapters to identify opportunities for future designers designing for collaborative sensemaking   

Design Implications 

Pros and cons of different design decisions  

Early on in my work, I discovered that different features afford differently abled 

sensemaking processes. For example, in an hour-long task, while notepad’s presence decreased 

task-performance, longer sensemaking tasks might benefit from the notepad’s provenance. 

Similarly, while a 2-member team might not overload each other with implicitly shared insights, 

a larger team or a longer task might generate significant intermediate analytic artefacts to 

overload the users, potentially reducing the advantages of implicit sharing. In short, while 

previous tools have been tested in their entirety, based on my findings I would advocate for 

modular tools that could be customized and personalized to the task at hand.  

For example, when finding insights the tool could potentially minimize features not 

needed for the task. The document space could be expanded, revealing more features in the 

document space that might make the insight finding task easier. Such features may include, 

running NLP in real-time to find unique or common words in a particular document across the 
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dataset. Similarly, when analysing insights previously discovered, the analysis space could be 

expanded conversely revealing more interesting features. Such features may include offering 

new colors to attribute to different cases/stories etc. 

Further, I discovered that evaluating these tools with human subjects reveals insights that 

would be missed, if human-centered design approach is ignored. For example, SAVANT’s 

Visualization-only condition performed shockingly better than when both Visualization and 

Notepad were present. Similarly, Implicit sharing only helped enough to find more clues but led 

to cognitive tunnelling. REFLECTIVA’s Hypothesis Window was used far more for record-

keeping than for analysis suggesting that users preferred unstructured analysis. Only through the 

iterative human-centred design and evaluation could the benefits of every design decision be 

independently tested. Based on my findings, I advocate for future tools to evaluate every design 

decision independently and together prior to their adoption. 

Role of technology in Sensemaking tool design 

During the research presented in this dissertation, the technological landscapes have 

changed, and continue to change. We have moved from “Minority-Report”esque world to citizen 

scientists on Reddit Bureau of Investigation to predictive policing that helps allocate social 

services by leveraging AI to predict when/where future crisis is likely to occur. The role of 

technology and human is changing in critical sensemaking processes. Is technology aiding us in 

identifying criminals or are we cleaning up data to aid technology catch criminals? Is a self-

driving car better at analysing who dies in a crash, or will it better for humans to decide which 

one of their own species dies? Which one is better, is a philosophical question beyond the scope 

of this dissertation. 
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However, I will focus on two technological advancements, intrinsically tied to this 

dissertation. Whether a human or a robot or a combination decides to solve crimes in the future, 

leveraging intermediate data analytic artefacts would be invaluable. Such artefacts would be 

necessary to expand each other’s potential solution space, increasing the possibility of 

identifying globally optimal solution as opposed to a locally optimal solution. In SAVANT, such 

artefacts were the Post-It Notes in raw. In REFLECTIVA, these notes were processed into 

Visualizations. However, future technologies can leverage other intermediate analytic artefacts 

as well, including but not limited to identifying Hypothesis and processing evidences 

automatically to associate with confirming or disconfirming these Hypothesis. Once identified 

and tied to evidences, analysts could use these to rank how well a hypothesis is likely to hold. 

Similarly, as we amass more data about judgements in crime-solving, we could 

potentially leverage technologies like deep learning. However, our crime datasets are not clean. 

Human behaviour induced biases is intertwined with these datasets. As we discover increasingly 

wrongful incriminations every passing year, it becomes even more imperative to remain vigilant 

about use of such datasets as predictors or learning sources for AI based technologies. Lack of 

vigilance, might lead to creating algorithms that learn to produce biased results based on past 

results. On the one hand, technology like REFLECTIVA can show us our biases. On the other 

hand, crowd-workers can clean up bad data or even perform analysis together, feeding into the 

machines. I am hopeful that through a combination of approaches, complex sensemaking tasks 

will not remain complex forever.  
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Automated documentation and credits 

SAVANT and REFLECTIVA tools offer provenance of sensemaking process, the 

contributions of the collaborators, and enables story telling of how sensemaking transpired 

though usage log analysis. However, they also might seem constraining as they do not allow 

sensemaking efforts made beyond these tools to be reflected or captured within these systems. 

For example, analysts may use pen and paper or other tools like Excel etc. to perform analysis. 

While such tools offer simplicity and ease of use, SAVANT and REFLECTIVA offer the 

advantage of documented proof about who shared what insights and who was responsible for 

leveraging those insights.  

Such documentation has been shown to be important when functioning in meritocratic 

organizations that credit analysts based on their performance. 9/11 Reports found that such 

systems prevent analysts from freely sharing information as the career progression is tied to them 

solving cases. Systems like SAVANT and REFLECTIVA when further developed may offer a 

documentation perspective to giving credit to whom it is due for sharing and leveraging insights 

together. Providing such data provenance might even encourage the analysts to use such tools 

more, and to share more freely.  

Privacy and implicit sharing  

While SAVANT and REFLECTIVA were designed to enable full sharing implicitly, the 

existing tools do not enable such level of sharing. The present-day tools enable analysts to create 

local notes and shoeboxes where important information may be saved for sensemaking task at 

hand or potential future sensemaking tasks. Analysts may then choose to share parts or whole of 

these artifacts with people they believe it would be advantageous to share with. Solo SAVANT 
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did indeed have a shoebox/bookmarking facility but it was removed for the collaborative version 

because retired analysts continue to argue that creating such local silos prevent information 

dissemination and knowledge sharing, leading to crime failures (Heuer, 1999). 

Alternatively, crime investigation agencies also function in a hierarchical manner where 

access to information is determined by the role and relevance. Such organizational structures 

impose further limitations to information sharing. While privacy and security of data is 

necessary, future designers of sensemaking tools will have to find the balance between privacy 

and implicitly sharing all the notes. One may also argue that due to automated implicit sharing, 

analysts may choose to create lesser notes in danger of over sharing, In SAVANT, I found that to 

be quite opposite. Far more notes, connections, and piles were created during implicit sharing. 

Finally, as a designer, I believe in transparency and such value system is represented in 

my design of SAVANT and REFLECTIVA. I believe that information, when shared freely, 

across the agencies and members can help solve crimes that have suffered from knowledge that 

was confined to silos. However, future research is needed to further understand the balance 

between implicit sharing and privacy by utilizing other potential value systems that might value 

privacy over transparency, for example. 

General Limitations 

There are a number of general limitations of this dissertation research, that highlight 

where future research may be pursued. Methodologically, Chapters 3-5 have focussed on using 

lab-experiments as a controlled setting to identify the impact of each design decision on task-

performance and user experience. My findings agree with findings from previous literature about 

sensemaking and remote team-work. However, owing to the nature of the method, in-the-wild 
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studies might illustrate even more complex processes at work. In future, deploying secure 

systems similar to presented in this dissertation to understand how collaborative sensemaking 

may be improved with participants who are significantly impacted by the performance should be 

pursued.  

Secondly, the experimental design itself focuses on 1-2 team members who are non-

experts working together on an hour-long task. The results of this dissertation would help design 

tools for collaborating pairs performing a focused short-lived task, like solving a puzzle etc. 

Future work is needed to generalize the findings to experts working on longer tasks together in 

bigger teams. For example, the nature and volume of the dataset itself will change, affecting the 

use of different tools and design of such tools. While analysts would still potentially chunk to 

shoebox and iteratively access the smaller shoe-boxed information, SAVANT/REFLECTIVA 

might be unable to afford sufficient space for analysis. Large wall displays and VR might instead 

afford larger spaces to overcome this limitation.  

Third, the presented setup for the lab experiments included no access to pen for 

annotations. This removed the potential of creating intermediate analytic artifacts that could not 

be shared. All the artifacts were digital and were implicitly shared. This was done to understand 

how a digital only setup would function, and if it would still be possible to perform sensemaking 

when pen and paper were unavailable. Future studies and tools should consider including nom-

digital tools for sensemaking to situate their research in “real world” better. For example, 

alternative setups might involve mobile location aware devices for collocated sensemaking 

(Wozniak and Goyal et. al., 2016) 
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Fourth, despite the iterative nature of the design of the tools, results cannot be directly 

compared across them. Solo SAVANT involved a single user trying to solve 10 crime cases in 1 

hour. Collaborative SAVANT shared 3 and two half crime cases each over an hour, forcing users 

to spend time and effort sharing information that would have been otherwise directly available. 

REFLECTIVA task was shorter by 15 minutes, with extra effort and support from the new 

features. While these experimental modifications were made to continue to ensure that the task 

was challenging, it made direct result comparison challenging across the iterations. For example, 

REFLECTIVA standard interface reported slightly lower Clue Recall than SAVANT implicit 

condition. Readers should be careful about reading results due to the experimental changes. 

Finally, while my work has been significantly focussed on crime-solving based domain, 

similar analytical challenges exist in law, education, epidemiology, health, and space programs. 

Using intermediate analytic artifacts might still be useful for tasks like disconfirming 

judgements, enriching qualitative analysis with more interpretations, identifying hidden patterns 

of spread of diseases, etc. This, open-ended exploratory tasks beyond intelligence analysis can 

benefit from these approaches to improve social and cognitive processes in collaboration. 

Future Work 

One particular direction of future work, would be identifying other domains where 

SAVANT and REFLECTIVA might be useful. One such domain might be qualitative data 

analysis. Qualitative researchers inductively perform analysis across large bodies of text. They 

usually parse the same piece of text multiple times until they have exhausted identifying codes 

and themes in the dataset. They may then try to decipher how themes might be interconnected 

within each other. This process of qualitative data analysis is an inductive and time-consuming, 
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but rewarding process, as the researchers might uncover phenomena that could not be discovered 

using other techniques. SAVANT may be modified to help multiple qualitative researchers code 

data and share their codes, associated with the same textual pieces. The researchers may then 

choose to communicate with each other about common codes or use the free form analysis space 

to identify how multiple themes are connected and help tell the story behind their data. 

REFLECTIVA may help researchers remain self-aware that they are not focusing on one 

particular interviewee or even theme. This will help them spread the focus of their attention 

equally across multiple interviewees and/or themes. 

 

 

Figure 16 The Experimental Setup. Participant signed a consent form prior to wearing Q Sensors (by 
Affectiva Inc.). Next, the Q Sensor was synched with a server and EDA values were baselined at the end 

of watching a calming swimming fish video. Based, on one of the four conditions, user then was 
explained the task, give the task-set, and was notified appropriately (or not at all in the fourth condition). 
The sensor was removed at the end of task. The user then filled out a report about serial killer cases and 
serial killer identity. Next, user filled out a survey about workload, and clue utility and timing. Finally, 

the experimenter performed the retrospective video analysis of the sensemaking process associated with 
EDA acceleration, deceleration, and clue timing. 
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A second direction for future work might be designing to overcome interruptions. As 

introduced in chapter 1, there was no joint information center to manage interrupting requests by 

the 24/7 news cycle after the Boston Marathon Bombing, and this led to confusion about what 

each agency was doing. However, interruptions are necessary to collaboration. While analysts 

are faced with a constant influx of information, they have to identify the importance of each new  

piece of information. Previous work has shown that randomly interrupting workers with 

notifications can decrease performance and that interruptions may have fewer negative 

consequences if presented at task boundaries (Bailey et al., 2006; Czerwinski et al., 2000). 

However, this approach requires developing, modeling and validating the task execution 

structures prior to manipulating interruptions (Bailey & Iqbal, 2008), and can be difficult for 

complex analytical tasks (Balakrishnan et al., 2010; Goyal et al., 2016; Goyal et al., 2013; Goyal  

 

Figure 17: Workflow for Crowdsourcing 
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et al., 2014). Instead future tools could leverage physiological data from EDA (Electrodermal 

Activity derived from Galvanic Skin Response) and help identify arousal states (Ax, 1953; Nagai 

et al., 2004; Sykes et al., 2003, Züger et al. 2015) to infer interruptibility, as shown in a 

sensemaking study (Figure 16) where interrupting at significant acceleration and deceleration of 

EDA had a significant impact on task performance (Goyal et al, 2017). 

An alternative direction for future work might be enabling non-experts to help experts 

perform complex analysis. The Boston Marathon Bombing, as mentioned in Chapter 1, involved 

non-expert crime-solving redittors going online and iteratively trying to piece together the puzzle 

of who was responsible. While cognitive tunneling probably played a role in their failure to 

identify the correct criminals, they may also have failed due to a lack of coherent structure and 

direction. At the same time, there is a lack of sufficient expert resources to handle vast large 

amounts of crime data. Crowdsourcing platforms are increasingly becoming online platforms 

tools for enlisting help from workers who are not part of the traditional labor market.  

Some researchers have tried crowdsourcing for slightly more complex tasks such as 

producing reports (Bernstein et al., 2015; Teevan et al., 2016), creating short fiction stories (Kim 

et al., 2016) and creating travel itineraries (Zhang et al., 2012), or tasks requiring 

interdependence (Hahn et al., 2016, Salehi et al., 2017). Crowdsourcing crime-solving by non-

experts can be even more challenging due to a lack of domain expertise or sufficient domain 

experts available for training. Future work (Goyal et al, 2015) could leverage workflows that 

enable non-experts to contribute towards analysis with experts, as shown in Figure 17.  
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Conclusion  

In this dissertation, I presented findings from multiple experiments that iteratively 

developed the intelligence analysis tools for remote collaboration in small groups. While the 

previous research work has focused on computational advancement, this dissertation offers a 

human-centered approach to introduce collaborative sensemaking as a social-cognitive design 

challenge of effective modular tool design, social information sharing, and overcoming cognitive 

tunneling 

This dissertation suggests leveraging customization to build modular tools, automated 

implicit sharing to overcome cognitive load, and self-reflective visualizations to expand focus of 

attention. This dissertation further presents and evaluates designs of multiple interfaces: solo and 

collaborative SAVANT, and REFLECTIVA to show their effectiveness on sensemaking. This 

work contributes to design and theory of collaborative sensemaking and opens up new directions 

for future work. 
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